Method for forming structures in finfet devices
    91.
    发明授权
    Method for forming structures in finfet devices 有权
    在finfet装置中形成结构的方法

    公开(公告)号:US06852576B2

    公开(公告)日:2005-02-08

    申请号:US10825175

    申请日:2004-04-16

    Abstract: A method forms fin structures for a semiconductor device. The method includes forming a first fin structure including a dielectric material and including a first side surface and a second side surface; forming a second fin structure adjacent the first side surface of the first fin structure; and forming a third fin structure adjacent the second side surface of the first fin structure. The second fin structure and the third fin structure are formed of a different material than the first fin structure.

    Abstract translation: 一种形成半导体器件的鳍结构的方法。 该方法包括形成包括电介质材料并包括第一侧表面和第二侧表面的第一鳍结构; 在所述第一翅片结构的第一侧表面附近形成第二鳍结构; 以及在所述第一翅片结构的所述第二侧表面附近形成第三鳍​​结构。 第二翅片结构和第三翅片结构由与第一翅片结构不同的材料形成。

    Method of forming a thick strained silicon layer and semiconductor structures incorporating a thick strained silicon layer
    94.
    发明授权
    Method of forming a thick strained silicon layer and semiconductor structures incorporating a thick strained silicon layer 有权
    形成厚应变硅层的方法和掺入厚应变硅层的半导体结构

    公开(公告)号:US06730576B1

    公开(公告)日:2004-05-04

    申请号:US10335447

    申请日:2002-12-31

    Abstract: A strained silicon layer is grown on a layer of silicon germanium and a layer of silicon germanium is grown on the strained silicon in a single continuous in situ deposition process with the strained silicon. Shallow trench isolations are formed in the lower layer of silicon germanium prior to formation of the strained silicon layer. The two silicon germanium layers effectively provide dual substrates at both surfaces of the strained silicon layer that serve to maintain the tensile strain of the strained silicon layer and resist the formation of misfit dislocations that might otherwise result from temperature changes during processing. Consequently the critical thickness of strained silicon that can be grown without significant misfit dislocations during later processing is effectively doubled for a given germanium content of the silicon germanium layers. The formation of shallow trench isolations prior to formation of the strained silicon layer avoids subjecting the strained silicon layer to extreme thermal stresses and further reduces the formation of misfit dislocations.

    Abstract translation: 应变硅层在硅锗层上生长,并且在应变硅上生长硅锗层,并在应变硅中进行单次连续原位沉积工艺。 在形成应变硅层之前,在硅锗的下层形成浅沟槽隔离。 两个硅锗层有效地在应变硅层的两个表面上提供双重衬底,其用于维持应变硅层的拉伸应变,并抵抗由加工过程中的温度变化引起的失配位错的形成。 因此,对于硅锗层的给定锗含量,可以在后续处理期间可以生长而不显着失配位错的应变硅的临界厚度被有效地加倍。 在形成应变硅层之前形成浅沟槽隔离避免使应变硅层受到极端的热应力,并进一步减少失配位错的形成。

    Double gate semiconductor device having separate gates
    96.
    发明授权
    Double gate semiconductor device having separate gates 有权
    具有分离栅极的双栅极半导体器件

    公开(公告)号:US06611029B1

    公开(公告)日:2003-08-26

    申请号:US10290158

    申请日:2002-11-08

    CPC classification number: H01L29/785 H01L29/42384 H01L29/4908 H01L29/66795

    Abstract: A semiconductor device may include a substrate and an insulating layer formed on the subtrate. A fin may be formed on the insulating layer and may include a number of side surfaces and a top surface. A first gate may be formed on the insulating layer proximate to one of the number of side surfaces of the fin. A second gate and may be formed on the insulating layer separate from the first gate and proximate to another one of number of side surfaces of the fin.

    Abstract translation: 半导体器件可以包括基板和形成在该副墨滴上的绝缘层。 鳍可以形成在绝缘层上,并且可以包括多个侧表面和顶表面。 第一栅极可以形成在靠近鳍片的多个侧表面中的一个的绝缘层上。 第二栅极,并且可以形成在与第一栅极分离并且靠近鳍片的多个侧表面中的另一个的绝缘层上。

    Method for controlling the amount of trim of a gate structure of a field effect transistor
    97.
    发明授权
    Method for controlling the amount of trim of a gate structure of a field effect transistor 失效
    用于控制场效应晶体管的栅极结构的微调量的方法

    公开(公告)号:US06448165B1

    公开(公告)日:2002-09-10

    申请号:US09746397

    申请日:2000-12-21

    Inventor: Bin Yu Haihong Wang

    Abstract: For fabricating a field effect transistor within an active device area of a semiconductor substrate, a layer of gate dielectric material is deposited on the semiconductor substrate. A layer of gate electrode material is deposited on the layer of gate dielectric material, and the gate electrode material is a semiconductor material. At least one of an N-type dopant or a P-type dopant or a neutral dopant is implanted into the layer of gate electrode material such that the at least one of an N-type dopant or a P-type dopant or a neutral dopant has a dopant concentration in the layer of gate electrode material. A layer of photo-resist material, a layer of BARC (bottom anti-reflective coating) material, and the layer of gate electrode material are patterned to form a gate structure of the field effect transistor. The gate structure is comprised of the remaining gate electrode material, and the BARC (bottom anti-reflective coating) material remains on the gate structure. The BARC (bottom anti-reflective coating) material is then stripped from the gate structure using an etching reactant that etches both of the BARC (bottom anti-reflective coating) material and the gate electrode material. An etch rate of the gate electrode material in the etching reactant increases with an increase of the dopant concentration of the at least one of an N-type dopant or a P-type dopant or a neutral dopant within the gate electrode material. Sidewalls of the gate structure are trimmed by a trim length during the step of stripping the BARC (bottom anti-reflective coating) material from the gate structure. Thus, the dopant concentration of the at least one of an N-type dopant or a P-type dopant or a neutral dopant in the gate electrode material is adjusted to control the trim length of the gate structure.

    Abstract translation: 为了在半导体衬底的有源器件区域内制造场效应晶体管,在半导体衬底上沉积一层栅介质材料。 栅极材料层沉积在栅极介电材料层上,栅电极材料是半导体材料。 N型掺杂剂或P型掺杂剂或中性掺杂剂中的至少一种注入到栅电极材料层中,使得N型掺杂剂或P型掺杂剂或中性掺杂剂中的至少一种 在栅极材料层中具有掺杂剂浓度。 将一层光致抗蚀剂材料,一层BARC(底部抗反射涂层)材料和该栅极电极材料层图案化以形成该场效应晶体管的栅极结构。 栅极结构由剩余的栅电极材料组成,并且BARC(底部抗反射涂层)材料保留在栅极结构上。 然后使用蚀刻BARC(底部抗反射涂层)材料和栅电极材料的蚀刻反应物,从栅极结构剥离BARC(底部抗反射涂层)材料。 蚀刻反应物中的栅电极材料的蚀刻速率随着栅极电极材料中的N型掺杂剂或P型掺杂剂或中性掺杂剂中的至少一种的掺杂剂浓度的增加而增加。 在从栅极结构剥离BARC(底部抗反射涂层)材料的步骤期间,栅极结构的侧壁被修剪长度。 因此,调整栅电极材料中的N型掺杂剂或P型掺杂剂或中性掺杂剂中的至少一种的掺杂剂浓度以控制栅极结构的修整长度。

Patent Agency Ranking