摘要:
First resistors (R1, R2) for setting a forward current value are connected in series to light-emitting diodes (LED 1, LED 2) respectively to constitute first serial circuits (112, 113), which are connected to an input terminal (111). Second serial circuits (115, 116) are connected in parallel to the first serial circuits (112, 113) respectively. The second serial circuits (115, 116) are constituted by a combination of a Zener diode (ZD1) and a second resistor (R3), and another combination of a Zener diode (ZD2) and a second resistor (R4). When a higher voltage than rated voltages of the light-emitting diodes (LED 1, LED 2) is applied, the Zener diodes (ZD1, ZD2) shunt current into the second serial circuit (115, 116) to allow the light-emitting diodes (LED 1, LED 2) to light up at desirable luminance levels different from each other. When a supplied power voltage decreases, current is not shunted, so that the same forward current flows through the light-emitting diodes (LED 1, LED 2), allowing the light-emitting diodes (LED 1, LED 2) to go off at the same timing.
摘要:
A CRC encoding circuit for generating a CRC code in accordance with a parallel data having a remainder portion data in a last data set of the parallel data, comprises: a first encoding unit for generating one or more first CRC codes in parallel in accordance with the remainder portion data; a CRC code selecting unit for selecting a second CRC code having predetermined number of bytes, from the first CRC codes generated by the first encoding unit; a converting unit for converting the remainder portion data into a serial data; and a second encoding unit for generating a third CRC code in accordance with the second CRC code selected by the CRC code selecting unit and the serial data converted by the converting unit.
摘要:
A diesel particulate filter (41) which traps particulate matter contained in the exhaust gas of a diesel engine (1) comprises an oxidation catalyst (41A) which exhibits a temperature-raising effect during regeneration of the filter (41). A controller (31) calculates the amount of particulate matter trapped in the filter (41) at the start of regeneration as a first amount, and calculates the amount of particulate matter burned during regeneration of the filter (41) as a second amount (S3, S10, S18). A deterioration factor d of the oxidation catalyst is calculated from the ratio of the second amount and first amount, and a target temperature for the next regeneration of the filter is determined on the basis of this deterioration factor d. Thus deterioration of the oxidation catalyst (41A) is compensated for, and an optimum temperature environment for regenerating the filter (41) is realized.
摘要:
A regeneration control device, which regenerates a filter (13) for trapping particulate matter in exhaust gas from an engine (1), is disclosed. The filter (13) supports a catalyst which oxidizes unburnt components in the exhaust gas. The regeneration control device has a temperature sensor (14) which detects a filter inlet exhaust gas temperature (Tdpf_in_mea); and a microcomputer (22). The microcomputer (22) is programmed to compute a filter outlet exhaust gas temperature (Tdpf_out_cal), not including temperature rise due to oxidation reaction of unburnt components based on the detected inlet exhaust gas temperature; compute the filter bed temperature (Tbed_cal) based on the detected inlet exhaust gas temperature and computed outlet exhaust gas temperature; compute a temperature rise (ΔThc1) due to oxidation reaction of unburnt components; correct the bed temperature based on the computed temperature rise (ΔThc1).
摘要:
A diesel engine (1) comprises an exhaust passage (3), and a DPM filter (4) provided on the exhaust passage (3), which traps diesel particulate matter (DPM) contained in the exhaust gas such that the diesel particulate matter accumulates therein. An engine controller (11) starts regeneration processing of the DPM filter (4) by raising the exhaust gas temperature when a regeneration timing of the DPM filter (4) is reached, sets a target exhaust gas temperature during regeneration processing to ensure that the temperature of the DPM filter (4) does not exceed an upper temperature limit of the DPM filter (4), even when the temperature of the DPM filter (4) is raised due to the engine (1) entering an idling condition during the regeneration processing, and controls the exhaust gas temperature to the target exhaust gas temperature.
摘要:
To regenerate a diesel particulate filter (10) which traps particulate matter contained in the exhaust gas of a diesel engine (20), a controller (16) raises the temperature of the exhaust gas through fuel injection control of a fuel injector (23), and thus burns the particulate matter trapped in the filter (10). The controller (16) cumulatively calculates the time during which the temperature of the filter (10) exceeds a target temperature as an effective regeneration time. By estimating the amount of particulate matter remaining in the filter (10) on the basis of the effective regeneration time, the controller (16) estimates the amount of remaining particulate matter with a high degree of precision and without consuming energy, whereupon regeneration of the filter (10) through fuel injection control ends.
摘要:
In each conversion blocks 10, 20 and 30, pixels adjacent to a subject pixel data are selected in the class tap construction section from SD signals, the detection of level distribution pattern of the pixel data is performed in the class categorization section and a class is determined based on the detected pattern. The pixel data of the subject pixel is generated by reading the prediction coefficient corresponding to classes from the prediction coefficient memory and performing prediction operation in the sum of products operation section using pixel data of the selected pixel selected by the prediction tap construction section and the prediction tap selection section and the read prediction coefficient. According to the selection of the switching sections 41 and 42, a HD signal having a high resolution is obtained and a signal whose tone level of a SD signal is corrected is obtained.
摘要:
The present invention provides a digital signal processing apparatus and a method for controlling the apparatus that allow for a reduction of circuit size to minimize an increase in power consumption and the costs of circuitry and an improvement in signal processing speed. To achieve this, the present invention eliminates a circuit arrangement that was conventionally required for executing a compare instruction, conditional jump instruction, and jump instruction, by adding a relatively small-sized circuit such as an encoder 51 for processing an external signal 10 and a capability of decoding a condition determination data select instruction.
摘要:
An integrated circuit internal signal monitoring apparatus comprises an integrated circuit. The integrated circuit comprises a signal change information generating section for detecting changes in a plurality of internal signals to be monitored in a circuit block, and in response to a level of at least one of the plurality of internal signals changing sequentially generating flags indicating the internal signal whose level has been changed, the post-change level, and that the levels of other internal signals have not been changed; a storage section for sequentially storing the flags and a trigger generating section for generating a write stop trigger signal for stopping a write operation of the flags to the storage section The integrated circuit internal signal monitoring apparatus further comprises an internal signal waveform reproduction section for reading the flags from the storage section after the generation of the write stop trigger signal.
摘要:
An echo canceler (34) includes a summing device (104) that subtracts a correction signal from a received signal, the difference of which represents the far-end signal with an error component. Instead of adapting its coefficients using the output of the summing device (104), the echo canceler (34) uses the difference between the input and output of a decision device (108) as an estimate of the error component alone. The estimate of the error component is then used to adapt the coefficients according to the adaptive least mean squares (LMS) algorithm. In one embodiment, the decision device (108) forms discrete multi-tone symbols based on the equalized output of the summing device. In this embodiment, the echo canceler (34) performs an inverse of the equalization step efficiently by replacing a division operation with a multiply operation and a corresponding power-of-two shift operation.