Abstract:
Described herein are a method and an apparatus for dynamically switching between one or more finite termination impedance value settings to a memory input-output (I/O) interface of a memory in response to a termination signal level. The method comprises: setting a first termination impedance value setting for a termination unit of an input-output (I/O) interface of a memory; assigning the first termination impedance value setting to the termination unit when the memory is not being accessed; and switching from the first termination impedance value setting to a second termination impedance value setting in response to a termination signal level.
Abstract:
In an embodiment, a memory device may contain device processing logic and a mode register. The mode register may a register that may specify a mode of operation of the memory device. A field in the mode register may hold a value that may indicate whether a command associated with the memory device is disabled. The value may be held in the field until either the memory device is power-cycled or reset. The device processing logic may acquire an instance of the command. The device processing logic may determine whether the command is disabled based on the value held by the mode register. The device processing logic may not execute the instance of the command if the device processing logic determines the command is disabled. If the device processing logic determines the command is not disabled, the device processing logic may execute the instance of the command.
Abstract:
Techniques and mechanisms for providing termination for a plurality of chips of a memory device. In an embodiment, a memory device is an integrated circuit (IC) package which includes a command and address bus and a plurality of memory chips each coupled thereto. Of the plurality of memory chips, only a first memory chip is operable to selectively provide termination to the command and address bus. Of the respective on-die termination control circuits of the plurality of memory chips, only the on-die termination control circuit of the first memory chip is coupled via any termination control signal line to any input/output (I/O) contact of the IC package. In another embodiment, the plurality of memory chips are configured in a series with one another, and wherein the first memory chip is located at an end of the series
Abstract:
Detection logic of a memory subsystem obtains a threshold for a memory device that indicates a number of accesses within a time window that causes risk of data corruption on a physically adjacent row. The detection logic obtains the threshold from a register that stores configuration information for the memory device, and can be a register on the memory device itself and/or can be an entry of a configuration storage device of a memory module to which the memory device belongs. The detection logic determines whether a number of accesses to a row of the memory device exceeds the threshold. In response to detecting the number of accesses exceeds the threshold, the detection logic can generate a trigger to cause the memory device to perform a refresh targeted to a physically adjacent victim row.