摘要:
New devices having horizontally-disposed nanofabric articles and methods of making same are described. A discrete electro-mechanical device includes a structure having an electrically-conductive trace. A defined patch of nanotube fabric is disposed in spaced relation to the trace; and the defined patch of nanotube fabric is electromechanically deflectable between a first and second state. In the first state, the nanotube article is in spaced relation relative to the trace, and in the second state the nanotube article is in contact with the trace. A low resistance signal path is in electrical communication with the defined patch of nanofabric. Under certain embodiments, the structure includes a defined gap into which the electrically conductive trace is disposed. The defined gap has a defined width, and the defined patch of nanotube fabric spans the gap and has a longitudinal extent that is slightly longer than the defined width of the gap. Under certain embodiments, a clamp is disposed at each of two ends of the nanotube fabric segment and disposed over at least a portion of the nanotube fabric segment substantially at the edges defining the gap. Under certain embodiments, the clamp is made of electrically-conductive material. Under certain embodiments, the contact between the nanotube patch and the trace is a non-volatile state. Under certain embodiments, the contact between the nanotube patch and the trace is a volatile state. Under certain embodiments, the at least one electrically conductive trace has an interface material to alter the attractive force between the nanotube fabric segment and the electrically conductive trace.
摘要:
New devices having horizontally-disposed nanofabric articles and methods of making same are described. A discrete electromechanical device includes a structure having an electrically-conductive trace. A defined patch of nanotube fabric is disposed in spaced relation to the trace; and the defined patch of nanotube fabric is electromechanically deflectable between a first and second state. In the first state, the nanotube article is in spaced relation relative to the trace, and in the second state the nanotube article is in contact with the trace. A low resistance signal path is in electrical communication with the defined patch of nanofabric. Under certain embodiments, the structure includes a defined gap into which the electrically conductive trace is disposed. The defined gap has a defined width, and the defined patch of nanotube fabric spans the gap and has a longitudinal extent that is slightly longer than the defined width of the gap. Under certain embodiments, a clamp is disposed at each of two ends of the nanotube fabric segment and disposed over at least a portion of the nanotube fabric segment substantially at the edges defining the gap. Under certain embodiments, the clamp is made of electrically-conductive material. Under certain embodiments, the contact between the nanotube patch and the trace is a non-volatile state. Under certain embodiments, the contact between the nanotube patch and the trace is a volatile state. Under certain embodiments, the at least one electrically conductive trace has an interface material to alter the attractive force between the nanotube fabric segment and the electrically conductive trace.
摘要:
Electro-mechanical switches and memory cells using vertically-disposed nanofabric articles and methods of making the same are described. An electro-mechanical device, includes a structure having a major horizontal surface and a channel formed therein. A conductive trace is in the channel; and a nanotube article vertically suspended in the channel, in spaced relation to a vertical wall of the channel. The article is electro-mechanically deflectable in a horizontal direction toward the conductive trace. Under certain embodiments, the vertically suspended extent of the nanotube article is defined by a thin film process. Under certain embodiments, the vertically suspended extent of the nanotube article is about 50 nanometers or less. Under certain embodiments, the nanotube article is clamped with a conducting material disposed in porous spaces between some nanotubes of the nanotube article. Under certain embodiments, the nanotube article is formed from a porous nanofabric. Under certain embodiments, the nanotube article is electromechanically deflectable into contact with the conductive trace and the contact is either a volatile state or non-volatile state depending on the device construction. Under certain embodiments, the vertically oriented device is arranged into various forms of three-trace devices. Under certain embodiments, the channel may be used for multiple independent devices, or for devices that share a common electrode.
摘要:
Methods for using carbon nanomaterials to alter the operational output of a device are described herein. The methods can include providing a device that contains a carbon nanomaterial in a first state, and applying an input stimulus to the carbon nanomaterial so as to change the first state into a second state. In the first state, the carbon nanomaterial can be used to produce a normal operational output of the device, whereas the device can produce an altered operational output when the carbon nanomaterial is in the second state. When producing an altered operational output, the device can continue operating, but the altered operational output can be non-indicative of the true operational state of the device. Devices containing a carbon nanomaterial that can be reconfigured from a normal operational output to an altered operational output are also described herein.
摘要:
Certain applicator liquids and method of making the applicator liquids are described. The applicator liquids can be used to form nanotube films or fabrics of controlled properties. An applicator liquid for preparation of a nanotube film or fabric includes a controlled concentration of nanotubes dispersed in a liquid medium containing water. The controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity.
摘要:
Under one aspect, a resonator 400 includes a nanotube element 410 including a non-woven fabric of unaligned nanotubes and having a thickness, and a support structure 404 defining a gap 406 over which the nanotube element 410 is suspended, the thickness of the nanotube element 410 and the length of the gap 406 being selected to provide a pre-specified resonance frequency for the resonator 400 The resonator 400 also includes a conductive element 412 in electrical contact with the nanotube element 410, a drive electrode 408 in spaced relation to the nanotube element 410, and power logic in electrical contact with die at least one drive electrode 408 The power logic provides a series of electrical pulses at a frequency selected to be about the same as the pre-specified resonance frequency of the resonator 400 to the drive electrode 408 during operation of the resonator 400, such that the nanotube element 410 responds to the series of electrical pulses applied to the drive electrode 408 by making a series of mechanical motions at the resonance frequency of the resonator 400.
摘要:
Electro-mechanical switches and memory cells using vertically-oriented nanofabric articles and methods of making the same. Under one aspect, a nanotube device includes a substantially horizontal substrate having a vertically oriented feature; and a nanotube film substantially conforming to a horizontal feature of the substrate and also to at least the vertically oriented feature. Under another aspect, an electromechanical device includes a structure having a major horizontal surface and a channel formed therein, the channel having first and second wall electrodes defining at least a portion of first and second vertical walls of the channel; first and second nanotube articles vertically suspended in the channel and in spaced relation to a corresponding first and second wall electrode, and electromechanically deflectable in a horizontal direction toward or away from the corresponding first and second wall electrode in response to electrical stimulation.
摘要:
Certain applicator liquids and method of making the applicator liquids are described. The applicator liquids can be used to form nanotube films or fabrics of controlled properties. An applicator liquid for preparation of a nanotube film or fabric includes a controlled concentration of nanotubes dispersed in a liquid medium containing water. The controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity.
摘要:
New devices having horizontally-disposed nanofabric articles and methods of making same are described. A discrete electro-mechanical device includes a structure having an electrically-conductive trace. A defined patch of nanotube fabric is disposed in spaced relation to the trace; and the defined patch of nanotube fabric is electromechanically deflectable between a first and second state. In the first state, the nanotube article is in spaced relation relative to the trace, and in the second state the nanotube article is in contact with the trace. A low resistance signal path is in electrical communication with the defined patch of nanofabric. Under certain embodiments, the structure includes a defined gap into which the electrically conductive trace is disposed. The defined gap has a defined width, and the defined patch of nanotube fabric spans the gap and has a longitudinal extent that is slightly longer than the defined width of the gap.
摘要:
Vacuum microelectronic devices with carbon nanotube films, layers, ribbons and fabrics are provided. The present invention discloses microelectronic vacuum devices including triode structures that include three-terminals (an emitter, a grid and an anode), and also higher-order devices such as tetrodes and pentodes, all of which use carbon nanotubes to form various components of the devices. In certain embodiments, patterned portions of nanotube fabric may be used as grid/gate components, conductive traces, etc. Nanotube fabrics may be suspended or conformally disposed. In certain embodiments, methods for stiffening a nanotube fabric layer are used. Various methods for applying, selectively removing (e.g. etching), suspending, and stiffening vertically- and horizontally-disposed nanotube fabrics are disclosed, as are CMOS-compatible fabrication methods. In certain embodiments, nanotube fabric triodes provide high-speed, small-scale, low-power devices that can be employed in radiation-intensive applications.