Abstract:
A radio communication system is provided with a high-power base station, a radio terminal which is located within a macro cell formed by the high-power base station, and a low-power base station which has a lower transmission output power than the high-power base station. The low-power base station sends, to the high-power base station, control information needed for the radio communication between the radio terminal and the low-power base station; the high-power base station sends, to the radio terminal, the control information received from the low-power base station; and the radio terminal performs radio communication with the low-power base station by using the control information received from the high-power base station.
Abstract:
A UE 100-1 and a UE 200-2 perform D2D communication that is direct device to device communication. The UE 100-1 transmits a D2D termination preliminary notification indicating that termination of the D2D communication is wished to the UE 100-2 during the D2D communication. The UE 100-1 terminates the D2D communication after transmitting the D2D termination preliminary notification.
Abstract:
A mobile communication system supports D2D communication being direct terminal-to-terminal communication. The mobile communication system comprises: UE 100-1 that receives a first control signal from a cellular communication network, and performs the D2D communication with UE 100-2 based on the first control signal. The UE 100-1 connects to cable communication network 40 and receives downlink user data addressed to the UE 100-2 from the cable communication network 40. The UE 100-1 performs D2D data relay of transmitting the downlink user data received from the cable communication network 40, to the UE 100-2 through the D2D communication.
Abstract:
A mobile communication system supports cellular communication in which data communication is performed between a network and a user terminal and D2D communication in which data communication is directly performed among two or more user terminals. The D2D communication is performed by using a part of the uplink radio resources of the cellular communication. The uplink radio resources include a specific radio resource that is used in the transmission of a predetermined uplink signal in the cellular communication. The use of the specific radio resource in the D2D communication is regulated.
Abstract:
When a UE 100-2 (a reception-side UE) that performs D2D communication by using UL radio resource switches communication modes between cellular communication and the D2D communication, if DL subframe in which data reception of the cellular communication should be performed and the UL subframe in which data reception of the D2D communication should be performed at least partially overlap on a time axis, then the UE 100-2 performs data reception in one subframe, out of the overlapping two subframes.
Abstract:
A communication control method pertaining to an embodiment of the present invention is for controlling dual connectivity communication which uses a master base station that establishes RRC connection with a user terminal and a secondary base station that provides a supplementary wireless resource to the user terminal. The communication control method comprises: a step in which the master base station receives, from the user terminal, a measurement report which includes measurement results found for each cell in the user terminal; and a step in which the secondary base station receives, from the master base station, a supplementary request for requesting the allocation of resources to the user terminal. In the step for receiving a supplementary request, the master base station includes, in the supplementary request, measurement results for a cell of the secondary base station which is included in the measurement results, and transmits the same.
Abstract:
UE 100-1 simultaneously transmits or receives a plurality of radio signals SG1 and SG2 associated with a plurality of radio communication apparatuses. The UE 100-1 transmits power difference information to eNB 200. The plurality of radio signals SG1 and SG2 has different frequencies from each other. The power difference information is information relating to a maximum power difference that is allowed in the plurality of radio signals SG1 and SG2.
Abstract:
A mobile communication system comprises: a user terminal that receives a desired wave signal from a serving cell while receiving an interference wave signal from a neighboring cell adjacent to the serving cell; and a base station that manages the serving cell. The base station comprises: a controller that generates an interference replica signal corresponding to the interference wave signal and superposes the interference replica signal on the desired wave signal; and a transmitter that transmits the desired wave signal superposed with the interference replica signal to the user terminal. The controller generates the interference replica signal such that the interference replica signal cancels the interference wave signal in a location of the user terminal. The interference replica signal acts as a disturbing signal, which disturbs demodulation of the desired wave signal, in a location other than the location of the user terminal.
Abstract:
A mobile communication system includes a user terminal that performs D2D communication under management of a base station, the D2D communication indicating direct device to device communication. The user terminal transmits a D2D buffer status report indicating an amount of non-transmitted data in the D2D communication to the base station.
Abstract:
A radio communication system (1) has: a radio terminal (UE); a radio base station (BS1) which transmits radio signals (RS1) to the radio terminal (UE) corresponding to the feedback from the radio terminal (UE); and a radio base station (BS2) which transmits, corresponding to the feedback from the radio terminal (UE), radio signals (RS2) to the radio terminal (UE) at the frequency and time identical to the frequency and time at which the radio signals (RS1) are transmitted. The time interval at which the radio terminal (UE) performs the feedback to the radio base station (BS1) is longer than the time interval at which the radio terminal (UE) performs the feedback to the radio base station (BS2).