Abstract:
A node (100; 300) of a mobile network is responsible for scheduling transmissions of data blocks between the mobile network and a terminal device (200, 200′). The node (100; 300) may for example be a base station (100) or a control node (300) of the mobile network. The node (100; 300) determines a processing time required by the terminal device (200; 200′) for processing signals for transmission of one of the data blocks. The processing time is determined from a plurality of supported processing times. On the basis of the determined processing time, the node (100; 300) schedules the transmission of the data block. The terminal device (200, 200′) may provide control data for determining the processing time to the node (100; 300).
Abstract:
A user equipment (UE) located in an extended-range area of a neighbor base station cell in a communication network, such as a low-power cell in a heterogeneous network, can inform its serving base station, such as a macro cell overlying the low-power cell, of the UE's capability of canceling interference from other cells' transmissions. That capability information enables the serving cell to decide based on more information whether range extension of the neighbor cell is beneficial for a number of UEs, and can result in more efficient radio resource utilization.
Abstract:
A radio network node and method for improved control of handover decisions of a User Equipment (UE) in a wireless communications network. The UE is in a served cell and is moving towards a neighboring cell. The network node obtains neighboring cell characteristics and determines a mobility threshold based on the obtained neighboring cell characteristics. The handover decisions of the UE to the neighboring cell are then controlled based on the determined mobility threshold.
Abstract:
Methods and arrangements for autonomous handover are provided. In a step, a mobile terminal sends a measurement report to a first network node. In another step, the mobile terminal starts a timer for measuring a wait period. In a further step, the mobile terminal waits until the wait period has expired. In still another step, the mobile terminal measures a signal used for mobility evaluations from the first radio network node. In yet another step, the mobile terminal performs random access to the second radio network node, if appropriate. Furthermore, the first radio network node sends information about random access channel (RACH) characteristics. Moreover, the first radio network node may send the wait period to the mobile terminal. In another step, the first radio network node sends the terminal context to neighbouring radio network nodes.
Abstract:
Systems and methods are disclosed for selecting resources for direct device to device communications in a cellular communication network. Preferably, resources for the direct device to device communications are selected to minimize, or at least substantially reduce, interference that results from the direct device to device communications in the cellular communication network. In one embodiment, a downlink resource of the cellular communication network is selected as a resource for a direct device to device communication link between a first wireless device and a second wireless device if at least one of the first and second wireless devices is less than a predefined threshold radio distance from a closest base station in the cellular communication network. Otherwise, an uplink resource of the cellular communication network is selected as a resource for the direct device to device communication link between the first and second wireless devices.
Abstract:
A method of decreasing radio link failure in challenging mobility scenarios for a user equipment (UE), device working in a cellular telecommunication network with a base station of each cell is disclosed. The method comprises measuring signal conditions for serving cell and neighboring cells periodically; and estimating channel variations and comparing the estimate with a threshold value such that, when channel variations are determined to exceed a channel variations threshold, performing an accelerated procedure comprising predicting whether handover is likely to occur in connection with the next scheduled measurement instant based on the signal measurements such that when handover is predicted, the procedure directly proceeds with sending an initial measurement report transmission request. Thereby handover delay can be reduced such that risk of radio link failure is reduced at significantly varying signal conditions. A UE device and a computer program are also disclosed.
Abstract:
This disclosure teaches a method and apparatus for radio link failure recovery by a User Equipment (UE). The example UE includes one or more controllers that are configured to store cell access information for a target cell that is the target for an impending handover from a serving cell, and for a backup cell that is selected by the UE from among a set of neighboring cells that includes the target cell. Advantageously, in case the handover to the target cell fails, the one or more controllers are configured to retrieve the cell access information stored for the backup cell and to use that information for re-establishing connection in the backup cell. The UE selects the backup cell, for example, as the neighboring cell other than the target cell having the strongest signal conditions with respect to the UE.
Abstract:
A connection request is received from a remote terminal of a radio communications system at a serving node of the radio communications system. Mobility information is requested (230) from the remote terminal based on receiving (200) the connection request. The requested mobility information is received (240) from the remote terminal, and the requested connection is established (250) with the remote terminal.
Abstract:
Embodiments herein relate to a method in a transceiver (400) for enabling control of interference cancelling in the transceiver (400). The transceiver (400) is in a first decoding mode. The transceiver (400) stores a received signal comprising a data block. The transceiver (400) decodes the received signal using the first decoding mode, thereby obtaining the data block. When an event is triggered, the transceiver (400) retrieves the stored signal. The transceiver (400) decodes the retrieved signal using a second decoding mode, thereby obtaining the data block. The transceiver (400) controls the interference cancelling in the transceiver (400), based on the data block decoded using the first decoding mode and the data block decoded using the second decoding mode.
Abstract:
An indication of the speed of movement of a UE in a radio communications system is received (801) at a network node of the radio communications system. The parameters of the radio communications system are then analyzed (803) using the speed of movement indication. The system parameters are then adjusted (805) using the analysis.