Abstract:
A method of transmitting a broadcast signal includes performing Reed-Solomon (RS) frame encoding and Cyclic Redundancy Check (CRC) encoding on first mobile service data to form a primary RS frame and on second mobile service data to form a secondary RS frame; encoding on at least the first mobile service data or the second mobile service data, in serial concatenated convolution code (SCCC) block units; encoding signaling information including transmission parameters, the transmission parameters including SCCC encoding information and RS frame encoding information; formatting a data group including the encoded first mobile service data and second mobile service data, wherein the first mobile service data are included in a first region within the data group and the second mobile service data are included in a second region within the data group, the second region being different from the first region; and transmitting the broadcast signal including the formatted data group.
Abstract:
A method is described for transmitting broadcast signals. First encoding of first broadcast service data is performed. Second encoding of the first encoded first broadcast service data is performed. The broadcast signals having the second encoded first broadcast service data multiplexed with second broadcast service data are transmitted. Each of the second encoded first broadcast service data and the second broadcast service data is allocated in a different data unit. The second encoded first broadcast service data and the second broadcast service data are allocated in different data units, respectively. Different robustness are allocated to the first broadcast service data and the second broadcast service data.
Abstract:
A digital broadcasting system and a method of processing data are disclosed. The method of processing data of a transmitting system includes generating signaling information including service-related transmission parameters of mobile service data, packetizing the generated signaling information to a predetermined data packet format, primarily multiplexing the packetized signaling information and a mobile service data packet including the mobile service data, and secondarily multiplexing the primarily multiplexed data packets and a main service data packet including main service data, thereby transmitting the secondarily multiplexed data packets to at least one transmitter located in a remote site.
Abstract:
A DTV transmitting system includes an encoder, a randomizer, a block processor, a group formatter, a deinterleaver, and a packet formatter. The encoder codes enhanced data for error correction, permutes the coded data, and further codes the permuted data for error detection. The randomizer randomizes the coded enhanced data, and the block processor codes the randomized data at an effective coding rate of 1/H. The group formatter forms a group of enhanced data having data regions, and inserts the coded enhanced data into at least one of the data regions. The deinterleaver deinterleaves the group of enhanced data, and the packet formatter formats the deinterleaved data into corresponding data bytes.
Abstract:
A television transmitting system includes an encoder, a data randomizing and expanding unit, a group formatter, a deinterleaver, and a packet formatter. The encoder codes enhanced data for error correction, permutes the coded data, and further codes the permuted data for error detection. The randomizing and expanding unit randomizes the error-detection-coded data and expands the randomized data. The group formatter forms a group of enhanced data having one or more data regions and inserts the expanded enhanced data into at least one of the regions. The deinterleaver deinterleaves the group of enhanced data, and the packet formatter generates enhanced data packets.
Abstract:
A broadcast receiving system capable of receiving mobile broadcast data and a method for processing broadcast signals are disclosed. The broadcast receiving system includes a first receiving unit, a second receiving unit, a known sequence detector, a equalizer, and a display unit. The first receiving unit receives a first broadcast signal including first mobile broadcast service data and first main broadcast service data. The second receiving unit receives a second broadcast signal including second mobile broadcast service data and second main broadcast service data. The known sequence detector detects at least one of known data included in the received first broadcast signal and known data included in the received second broadcast signal. The channel equalizer uses the detected known data, thereby channel-equalizing the received first and second mobile broadcast service data corresponding to the detected known data. The display unit provides any one of first video data and second video data included in the channel-equalized first and second mobile broadcast service data to a user.
Abstract:
The present invention relates to a digital broadcasting system for transmitting/receiving a digital broadcasting signal and a method of processing data. In one aspect of the present invention provides a method of processing data, the method including receiving a broadcasting signal in which mobile service data and main service data are multiplexed, demodulating the received broadcasting signal, obtaining an identifier indicating that data frame of the broadcasting signal includes service guide information, decoding and storing the service guide information from the data frame; and outputting a service included in the mobile service data according to the decoded service guide information.
Abstract:
Methods and apparatus for transmitting and receiving broadcast signals are provided. The method for transmitting a broadcast signal includes encoding mobile data for forward error correction (FEC), encoding signaling data, forming data groups including the encoded mobile data and the encoded signaling data and transmitting a signal frame that includes the data groups.
Abstract:
The present invention relates to a digital broadcasting system for transmitting/receiving a digital broadcasting signal and a method of processing data. In one aspect of the present invention provides a method of processing data, the method including receiving a broadcasting signal in which mobile service data and main service data are multiplexed, demodulating the received broadcasting signal, obtaining an identifier indicating that data frame of the broadcasting signal includes service guide information, decoding and storing the service guide information from the data frame; and outputting a service included in the mobile service data according to the decoded service guide information.
Abstract:
A broadcast receiving system capable of receiving mobile broadcast data and a method for processing broadcast signals are disclosed. The broadcast receiving system includes N number of antenna elements, a demodulator, a transmission parameter detector, and a block decoder. The N number of antenna elements receives each of the broadcast signals. The demodulator demodulates the broadcast signal having greater signal strength among each of the received broadcast signals. The transmission parameter detector detects the transmission parameter. The block decoder symbol-decodes the mobile broadcast service data included in the received broadcast signal in block units, based upon the detected transmission parameter.