Abstract:
The present invention relates to an oral drug delivery system with biphasic release characteristics comprising a porous matrix comprising at least one drug substance, sugar(s), a release retarding polymer, gas generating components and optionally, pharma-ceuti-cally acceptable auxiliary components wherein the pharmaceutical composition further comprises a coating of said drug substance. The pharmaceutical composi-tion, either in the form of pellets (multiparticulate or single unit dosage form), beads, granules, capsules or tablets, is retained in the stomach while selectively delivering the drug(s) at gastrointestinal levels and upper parts of the small intestine over an extended period of time. The release of the drug from the said pharmaceutical composition is characterized by a biphasic release profile of the drug substance, which exhibits both immediate and controlled release characteristics.
Abstract:
The present invention relates to a controlled release pharmaceutical composition comprising amounts ranging from about 0.1 to about 4.5% w/w, of one or more of rate controlling cellulosic ether polymers.
Abstract:
The present invention provides for the production of ASA from yeast capable of producing ASA from KLG. The present invention provides methods for the production of ASA as well as recombinant yeast capable of producing ASA from a carbon source.
Abstract:
A method and apparatus is provided for implementing a cache control system effective to eliminate many of the timing problems occurring in dynamic, high bandwidth cache control systems. In one exemplary embodiment, a dummy content addressable memory (CAM) cell is provided and is strategically placed on the chip layout farthest away from the cache word line driver circuit. The dummy output signal is a required input to a cache hit evaluation circuit such that premature cache hit outputs are eliminated. The dummy cell is designed to quickly discharge a cache match line and indicate a non-hit status when any address bit line produces a mismatch indication, especially for expanded bandwidth and dynamic systems where the address lines are more extensive and the system is synchronized to predetermined clock cycles. The cache system further operates in a prefetch mode to determine hits for next in-line requested addresses. The system further includes implementations for test mode, refill, ICACHE block invalidation and cache reset signal generation.
Abstract:
A method and apparatus is provided for implementing a cache control system effective to eliminate many of the timing problems occurring in dynamic, high bandwidth cache control systems. In one exemplary embodiment, a dummy content addressable memory (CAM) cell is provided and is strategically placed on the chip layout farthest away from the cache word line driver circuit. The dummy output signal is a required input to a cache hit evaluation circuit such that premature cache hit outputs are eliminated. The dummy cell is designed to quickly discharge a cache match line and indicate a non-hit status when any address bit line produces a mismatch indication, especially for expanded bandwidth and dynamic systems where the address lines are more extensive and the system is synchronized to predetermined clock cycles. The cache system further operates in a prefetch mode to determine hits for next in-line requested addresses. The system further includes implementations for test mode, refill, ICACHE block invalidation and cache reset signal generation.
Abstract:
A write driver apparatus (10) is adapted for producing a first data output signal and a second data output signal used in driving data onto a bit line pair (16, 18) associated with an electronic computer memory. The first and second data output signals represent desired data and are produced in response to a data signal, refill signal, and a data propagation clock signal. The data propagation signal is derived from system clock signals. A precharge circuit (12) associated with the write driver (10) operates in response to a precharge clock signal to precharge the bit lines (16, 18) prior to each read or write operation. The precharge clock signal is related to the data propagation signal to ensure that the bit lines (16, 18) are fully precharged prior to a read operation. A keeper circuit (14) associated with the bit lines (16, 18) also helps maintain a desired charge state on the bit lines during a read operation from memory cells (20) connected to the bit lines.
Abstract:
An address gating circuit for a memory array having redundant word lines. The address gating circuit includes a plurality of address lines comprising paired true and complement address lines for receiving address bits. The true and complement values of the address lines are ORed together then the results are ANDed together to generate an output. The output is used to inhibit selection of one of the address lines until a latest address bit is received.
Abstract:
A method and apparatus for providing single clock cycle pipelined access of a memory system, which combines synchronization and self resetting techniques, includes an array of memory cells that are arranged into columns and rows and intercoupled by bit lines and word lines. The memory system also includes an address decoder and a sense enable circuit. The address decoder, upon receiving an address, interprets the address to enable a particular word line, or word lines, and to disable precharging of a bit line, or bit lines. With the word line active, the sense enable circuit generates a sense enable signal when the clock signal has encountered a transitional edge, or is in an active state. When the sense enable signal is active, the sense amplifier reads the data from the addressed memory cell via the bit lines to produce output data.
Abstract:
Multiselection of word lines is eliminated in a memory array which includes a word line generation circuit which inhibits line selection until a latest address bit is received.
Abstract:
A word line driver circuit operable for receiving address signals from a decoder circuit and for gating these address signals to be outputted as a word line signal to one or more memory cells within a RAM. The driver circuit prevents oscillations of the outputted word line signal by not allowing any internal nodes between circuit elements to have a floating potential. This function is provided by a plurality of circuit elements arranged in a unique manner so that the internal nodes are not allowed to float.