Abstract:
In a method and apparatus for automatic marker-free fusion (matching) of 2D fluoroscopic C-arm images with preoperative 3D images using an intraoperatively acquired 3D data record, an intraoperative 3D image is obtained using a C-arm x-ray system, image-based matching of an existing preoperative 3D image in relation to the intraoperative 3D image is undertaken, which generates a matching matrix of a tool plate attached to the C-arm system is matched in relation to a navigation system, a 2D fluoroscopic image to be matched is obtained, with the C-arm of the C-arm system in any arbitrary location, a projection matrix for matching the 2D fluoroscopic image in relation to the 3D image is obtained, and the 2D fluoroscopic image is fused (matched) with the preoperative 3D image on the basis of the matching matrix and the projection matrix.
Abstract:
The invention relates to a method for the merged display of first image information captured using a first imaging device with second image information captured using a second imaging device, whereby said image information relates to the same area of examination in the human or animal body, in particular a hollow organ, in which method: a plurality of individual, two-dimensional images of the area under examination are recorded in the form of fluorescence images by light-excitation of fluorescent areas of the area under examination, using a medical instrument to be introduced invasively into the area under examination, in particular a catheter, a 3D fluorescence image data record, suitable for the three-dimensional reconstruction of a fluorescence three-dimensional image of the area under examination, is generated from the individual two-dimensional images, a further 3D image data record of the area under examination recorded using a further examination procedure, said further 3D image data record being suitable for the three-dimensional reconstruction of a further three-dimensional image of the area under examination, is used, the 3D fluorescence image data record and the further 3D image data record are registered with one another, and one or more fluorescence-optically marked, relevant areas of the examination volume, on the basis of the mapping rules determined by the registration process, are displayed on a monitor, said areas being accurately positioned in the further three-dimensional image generated using the further 3D data record, whereby either a) one or more fluorescence-optically marked, relevant areas of the area under examination are identified in the 3D fluorescence image data record in terms of their spatial position, and only these extracted partial image areas are displayed, said extracted partial image areas being accurately positioned in the further three-dimensional image, or b) the complete fluorescence three-dimensional image is superimposed over the further three-dimensional image, with voxels having predefined gray-scale values being masked out.
Abstract:
Catheter device comprising a catheter, in particular an intravascular catheter, for insertion into an area being examined, in particular into a vessel or cavity-containing organ in the body of a person or animal, wherein in the area of the catheter tip a device (3) is provided for emitting excitation light for light-optically exciting an area being examined surrounding said catheter tip, furthermore a device (3) is provided for collecting response light emitted, owing to excitation, from the area being examined, and furthermore a position sensor (13, 24, 27) is provided enabling said catheter tip's spatial position and/or orientation to be registered in a system of coordinates of a position-registering system (7, 14).
Abstract:
In a method and apparatus for the automatic merging of 2D fluoroscopic C-arm images with preoperative 3D images with a one-time use of navigation markers, markers in a marker-containing preoperative 3D image are registered relative to a navigation system, a tool plate fixed on the C-arm system is registered in a reference position relative to the navigation system, a 2D C-arm image (2D fluoroscopic image) that contains the image of at least a medical instrument is obtained in an arbitrary C-arm position, a projection matrix for a 2D-3D merge is determined on the basis of the tool plate and the reference position relative to the navigation system, and the 2D fluoroscopic image is superimposed with the 3D image on the basis of the projection matrix.
Abstract:
In a method and apparatus for automatic marker-free fusion (matching) of 2D fluoroscopic C-arm images with preoperative 3D images using an intraoperatively acquired 3D data record, an intraoperative 3D image is obtained using a C-arm x-ray system, image-based matching of an existing preoperative 3D image in relation to the intraoperative 3D image is undertaken, which generates a matching matrix of a tool plate attached to the C-arm system is matched in relation to a navigation system, a 2D fluoroscopic image to be matched is obtained, with the C-arm of the C-arm system in any arbitrary location, a projection matrix for matching the 2D fluoroscopic image in relation to the 3D image is obtained, and the 2D fluoroscopic image is fused (matched) with the preoperative 3D image on the basis of the matching matrix and the projection matrix.
Abstract:
An operating device for influencing medical image information items displayed at a display surface with a movable operating element has a motion acquisition system for quantitatively determining adjustment motions of the operating element, with the representation of the image information items displayed at the display surface being influenced solely by motions of the operating element.
Abstract:
In a method for automatically determining coordinates, relative to a reference coordinate system, of markers contained in a 3D volume data set of a subject provided with markers imaged in 2D projections of the 3D volume data set are detected, the centers of gravity of the imaged markers are determined, and back projection straight lines through the markers are established. The intersection points of the back projection straight lines with each other are identified, or the points with the smallest distance from one another on different back projection straight lines are determined if the back projection lines arc skewed. Spatially limited areas are identified, which contain an accumulation of intersection points of back projection straight lines or an accumulation of points with the smallest distance from one another. The coordinates of the centers of gravity of these spatially limited areas are calculated and are used as the coordinates for the respective markers.
Abstract:
The invention relates to a device and to a method for visual assistance during the electrophysiological use of a catheter in the heart, enabling electroanatomic 3D mapping data relating to an area of the heart to be treated to be visualized during the use of the catheter. Before the catheter is used, 3D image data of a body region containing the area to be treated is detected by means of a method for tomographic 3D imaging. The area to be treated or significant parts thereof are extracted from said 3D image data, in order to obtain selected 3D image data. The electroanatomic 3D mapping data and the selected 3D image data obtained are then classed in terms of position and dimension, and are adjacently visualized, for example, during the catheter ablation. The inventive method and associated device enable the orientation of the operator to be improved during the use of a catheter in the heart.
Abstract:
The invention relates to a method and a device for visually supporting an electrophysiology catheter application in the heart, whereby electroanatomical 3D mapping data of an area of the heart to be treated which are provided during performance of the catheter application are visualized. Before the catheter application is carried out, 3D image data of the area to be treated are recorded by means of a tomographical 3D imaging method, a 3D surface profile of objects in the area to be treated is extracted from the 3D image data by segmentation and the electroanatomical 3D mapping data provided and the 3D images representing the 3D surface profile are associated with each other in the correct position and dimension relative each other and e.g. visualized in an superimposed manner during the catheter application. The present method and the corresponding device allow for an improved orientation of the user who carries out an electrophysiology catheter application in the heart.
Abstract:
A system and method of treating tachycardias and similar syndromes by the use of catheter ablation of tissue is described. A computed tomography (CT)-like image of the heart is obtained and processed to segment the various types of tissue. Papillary muscle areas are identified and displayed differently from the other nearby tissues so that the muscles can be avoided during treatment to avoid or minimize damage to the muscles during ablation treatment. Electrophysical data and scar tissue may also be identified in the image, which may be of the endoscopic type. The position of the catheter may be displayed as a synthetic image on the endoscopic view.