Abstract:
A flange connection for an exhaust section of a gas turbine engine. The flange connection includes a stub flange attached to an exhaust manifold. The stub flange has a first axial face for engagement with the axial face of a cylinder flange extending radially from an exhaust cylinder. A plate structure attached to the cylinder flange is configured to provide axial retention of the stub flange to the axial face of the cylinder flange. The plate structure includes a resilient beam portion extending radially inwardly and engaging a second axial face of the stub flange. The stub flange is retained between the cylinder flange and the beam portion of the plate structure in an interference fit to provide three degrees of freedom of the stub flange relative to the exhaust cylinder.
Abstract:
A shifter that can avoid utilizing a partial pulse, comprising: at least one shifting stage, for receiving an external clock signal or a command triggering clock signal to generate sampling signals according a command signal; and a command triggering clock signal generating circuit, for generating the command triggering clock signal according to the command signal. The shifting stage utilizes the external clock signal to generate the sampling signal but does not utilize the command triggering clock signal to generate the sampling signal, if the command triggering clock signal may have a partial pulse for a cycle that the shifting stage generates the sampling signal.
Abstract:
A system and method for chip package fabrication is disclosed. The chip package includes a base re-distribution layer having an opening formed therein, an adhesive layer having a window formed therein free of adhesive material, and a die affixed to the base re-distribution layer by way of the adhesive layer, the die being aligned with the window such that only a perimeter of the die contacts the adhesive layer. A shield element is positioned between the base re-distribution layer and adhesive layer that is generally aligned with the opening formed in the base re-distribution layer and the window of the adhesive layer such that only a perimeter of the shield element is attached to the adhesive layer. The shield element is separated from the die by an air gap and is configured to be selectively removable from the adhesive layer so as to expose the front surface of the die.
Abstract:
A process for producing and a powdery water-absorbing polymers comprising: about 0.01 to 20 wt. % of a fine particle with a particle size of less than about 200 μm; about 0.001 to 10 wt. % of a thermoplastic adhesive; and about 60 to 99.998 wt. % of a water-absorbing polymer particle with a particle size of about 200 μm and above, wherein the powdery water-absorbing polymers have: a flow value (FFC) within the range from about 1 to 13, and/or a dust portion of at most about 6 are disclosed. Also disclosed are a transport process, a composite, chemical products, and a use of a thermoplastic adhesive.
Abstract:
A horn having a substantially hollow body with a first end, a medial portion, and a second end. The medial portion has an exhaust assembly having an opening. The body first end is structured to be engaged by the mouth of a user and defines an initial flowpath with a direction extending into the body. A confetti chamber is disposed in the hollow body. The confetti chamber is in fluid communication with the body first end and the exhaust opening. There is confetti disposed in the confetti chamber. An exhaust flowpath extends from the confetti chamber through said exhaust opening. The exhaust flowpath is not substantially aligned with said initial flowpath.
Abstract:
A radiant gas heater includes one or more gas inlets 105, for receiving gas from a gas supply and one or more air inlets 110. The heater includes gas burners 120A-120E, in which the gas is burned using oxygen admitted through the air inlets 110. One or more heat emitting elements 125A-125E are included, which emit infrared radiation using energy generated by the gas burners. One or more ionization probes 130A are provided proximal to two or more of the heat emitting elements for detecting the presence or absence of a flame. A housing 115 accommodates the gas burners, the heat emitting elements and the ionization probes. One or more control units are provided which are in electrical communication with the ionization probes and the gas inlets, the control units operable to shut off the gas supply if the ionization probes detect the absence of a flame.
Abstract:
Systems and methods for replication replay in a relational database are disclosed. In one embodiment, a relational database includes a master database and a slave database, and events performed on the master database are stored in a log. A portion of the log is provided to a slave replay system associated with the slave database, and the slave replay system identifies a first table row associated with a first event of the portion of the log and a second table row associated with a second event in the portion of the log. The slave replay system replays the first and second events on the slave database in parallel if the first and second rows are different rows with unique sets of values, and otherwise replays the first and second events serially.
Abstract:
A photovoltaic module package and fabrication method. The module includes photovoltaic cells, a dielectric material, and metallized material. Each photovoltaic cells includes a substrate material having a sun side and a backside, first doped regions interdigitated with second doped regions, both doped regions being located on the backside, and one being positively doped and the being negatively doped, and electrical contacts on each of the first and second doped regions. The dielectric material is adhered to the backside of the substrate material. Vias are formed through the dielectric material, extending to at least a portion of the electrical contacts. The metallized material extends from the electrical contacts through the vias and are patterned on a backside of the dielectric material. The metallized material is formed of a material that is both electrically and thermally conductive.
Abstract:
A catheter includes at least one electrode provided at its distal end. A spacing structure, provided at the catheter's distal end and encompassing the electrode, is transformable between a low-profile introduction configuration and a larger-profile deployed configuration, and maintains space between the electrode and a wall of a renal artery when electrical energy sufficient to ablate perivascular renal nerve tissue adjacent the renal artery is delivered by the electrode. The spacing structure may comprise perforations allowing for passage of arterial blood therethrough and transport of high frequency alternating current from the electrode to the perivascular renal nerve tissue via the blood, with no or negligible thermal injury to the artery wall. An ablation catheter with an electrode encompassed spacing structure can be deployed in each renal artery to deliver bipolar RF energy for ablating perivascular renal nerve tissue and ganglia near the aortorenal junctions.
Abstract:
A flexible catheter includes a magnetically permeable element provided at its distal end. The magnetically permeable element is configured for placement within the renal artery. External coils, positionable on anterior and posterior portions of a patient in proximity to the renal artery, are coupled to a generator which energizes the external coils to create a high-frequency oscillating magnetic field in body tissue between the external coils including the renal artery and perivascular renal nerve tissue. The magnetically permeable element serves to concentrate the magnetic field in a region near the renal artery. The concentrated magnetic field induces high frequency electric current sufficient to ablate the perivascular renal nerve tissue proximate the renal artery. A cooling arrangement can be provided at the catheter's distal end and configured to provide cooling to the renal artery during ablation of the perivascular renal nerve tissue.