摘要:
A method for introducing impurities includes a step for forming an amorphous layer at a surface of a semiconductor substrate, and a step for forming a shallow impurity-introducing layer at the semiconductor substrate which has been made amorphous, and an apparatus used therefore. Particularly, the step for forming the amorphous layer is a step for irradiating plasma to the surface of the semiconductor substrate, and the step for forming the shallow impurity-introducing layer is a step for introducing impurities into the surface which has been made amorphous.
摘要:
A subject of the present invention is to realize an impurity doping not to bring about a rise of a substrate temperature.Another subject of the present invention is to measure optically physical properties of a lattice defect generated by the impurity doping step to control such that subsequent steps are optimized.An impurity doping method, includes a step of doping an impurity into a surface of a solid state base body, a step of measuring an optical characteristic of an area into which the impurity is doped, a step of selecting annealing conditions based on a measurement result to meet the optical characteristic of the area into which the impurity is doped, and a step of annealing the area into which the impurity is doped, based on the selected annealing conditions.
摘要:
It is an object to prevent functions expected originally from being unexhibited when impurities to be introduced into a solid sample are mixed with each other, and to implement plasma doping with high precision. In order to distinguish impurities which may be mixed from impurities which should not be mixed, first of all, an impurity introducing mechanism of a core is first distinguished. In order to avoid a mixture of the impurities in very small amounts, a mechanism for delivering a semiconductor substrate to be treated and a mechanism for removing a resin material to be formed on the semiconductor substrate are used exclusively.
摘要:
A method for introducing impurities includes a step for forming an amorphous layer at a surface of a semiconductor substrate, and a step for forming a shallow impurity-introducing layer at the semiconductor substrate which has been made amorphous, and an apparatus used therefore. Particularly, the step for forming the amorphous layer is a step for irradiating plasma to the surface of the semiconductor substrate, and the step for forming the shallow impurity-introducing layer is a step for introducing impurities into the surface which has been made amorphous.
摘要:
An ion-implanting apparatus and method can dynamically control a beam current value with time and does not change energy. This ion-implanting apparatus controls a dynamic change in beam current value with time by giving feedback on the beam current value measured with a beam current measuring device.
摘要:
A method for introducing impurities includes a step for forming an amorphous layer at a surface of a semiconductor substrate, and a step for forming a shallow impurity-introducing layer at the semiconductor substrate which has been made amorphous, and an apparatus used therefore. Particularly, the step for forming the amorphous layer is a step for irradiating plasma to the surface of the semiconductor substrate, and the step for forming the shallow impurity-introducing layer is a step for introducing impurities into the surface which has been made amorphous.
摘要:
With evacuation of an interior of a vacuum chamber halted and with gas supply into the vacuum chamber halted, in a state that a mixed gas of helium gas and diborane gas is sealed in the vacuum chamber, a plasma is generated in a vacuum vessel and simultaneously a high-frequency power is supplied to a sample electrode. By the high-frequency power supplied to the sample electrode, boron is introduced to a proximity to a substrate surface.
摘要:
In order to realize a plasma doping method capable of carrying out a stable low-density doping, exhaustion is carried out with a pump while introducing a predetermined gas into a vacuum chamber from a gas supplying apparatus, the pressure of the vacuum chamber is held at a predetermined pressure and a high frequency power is supplied to a coil from a high frequency power source. After the generation of plasma in the vacuum chamber, the pressure of the vacuum chamber is lowered, and the low-density plasma doping is performed to a substrate placed on a substrate electrode. Moreover, the pressure of the vacuum chamber is gradually lowered, and the high frequency power is gradually increased, thereby the low-density plasma doping is carried out to the substrate placed on the substrate electrode. Furthermore, a forward power Pf and a reflected power Pr of the high frequency power supplied to the substrate electrode are sampled at a high speed, and when a value of which the power difference Pf-Pr is integrated with respect to time reaches a predetermined value, the supply of the high frequency power is suspended.
摘要:
With evacuation of interior of a vacuum chamber halted and with gas supply into the vacuum chamber halted, in a state that a mixed gas of helium gas and diborane gas is sealed in the vacuum chamber, a plasma is generated in a vacuum vessel and simultaneously a high-frequency power is supplied to a sample electrode. By the high-frequency power supplied to the sample electrode, boron is introduced to a proximity to the substrate surface.
摘要:
With evacuation of interior of a vacuum chamber halted and with gas supply into the vacuum chamber halted, in a state that a mixed gas of helium gas and diborane gas is sealed in the vacuum chamber, a plasma is generated in a vacuum vessel and simultaneously a high-frequency power is supplied to a sample electrode. By the high-frequency power supplied to the sample electrode, boron is introduced to a proximity to the substrate surface.