摘要:
This invention provides a charged particle source, which comprises an emitter and means of generating a magnetic field distribution. The magnetic field distribution is minimum, about zero, or preferred zero at the tip of the emitter, and along the optical axis is maximum away from the tip immediately. In a preferred embodiment, the magnetic field distribution is provided by dual magnetic lens which provides an anti-symmetric magnetic field at the tip, such that magnetic field at the tip is zero.
摘要:
The disclosure relates to a method of operating a gas field ion beam system in which the gas field ion beam system comprises an external housing, an internal housing, arranged within the external housing, an electrically conductive tip arranged within the internal housing, a gas supply for supplying one or more gases to the internal housing, the gas supply having a tube terminating within the internal housing, and an extractor electrode having a hole to permit ions generated in the neighborhood of the tip to pass through the hole into the external housing. The method comprises the step of regularly heating the external housing, the internal housing, the electrically conductive tip, the tube and the extractor electrode to a temperature of above 100° C.
摘要:
The present disclosure relates to a charged particle beam system comprising a charged particle beam source, a charged particle column, a sample chamber, a plurality of electrically powered devices arranged within or at either one of the charged particle column, the charged particle beam source and the sample chamber, and at least one first converter to convert an electrical AC voltage power into an electrical DC voltage. The first converter is positioned at a distance from either of the charged particle beam source, the charged particle column and the charged particle chamber, and all elements of the plurality of electrically powered devices, when operated during operation of the charged particle beam source, are configured to be exclusively powered by the DC voltage provided by the converter.
摘要:
A method and a device for stabilizing the emission current of an emitter of a charged particle beam device are provided. In the method, the emitter is operated under predetermined operation parameters including at least one voltage with a predetermined value. The method includes determining a first value of the emission current under the predetermined operation parameters and flash cleaning the emitter while a first electric field is applied to the emitter. The first electric field is generated by the at least one voltage having a first value of the at least one voltage, wherein the first value of the at least one voltage is provided in dependence of the determined first value of the emission current.
摘要:
Contamination may be removed from a field emitter unit during operation of the emitter unit in an environment at a pressure that lies within a range between 10−6 torr and 10−8 torr. At regular predetermined intervals an electron beam from an emitter tip may be deflected away from a path through a beam defining aperture and onto an electron collector. An electron beam current to the electron collector may be determined and the emitter unit may be flash heated if the current to the electron collector is below a threshold. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
The disclosed charged particle beam apparatus includes a field-emission electron source including single crystal of tungsten; a vacuum chamber having the electron source therein; an exhausting system for exhausting the vacuum chamber; a filament connected to the electron source to let flow a current through the electron source and thereby heat the electron source; a power supply for letting a current flow through the filament; an ammeter for measuring a total current emitted from the electron source; and a controlling unit for exercising control to cause the power supply to let a current flow through the filament when the total current measured periodically has become a predetermined ratio or less as compared with a total current from the electron source found immediately after first electron beam emission, or a total current from the electron beam found immediately after a current is let flow through the filament.
摘要:
An ion-implanting apparatus and method that can dynamically control a beam current value with time and does not change energy. This ion-implanting apparatus controls a dynamic change in beam current value with time by giving feedback on the beam current value measured with a beam current measuring means.
摘要:
This invention provides a charged particle source, which comprises an emitter and means fo generating a magnetic field distribution. The magnetic field distribution is minimum, about zero, or preferred zero at the tip of the emitter, and along the optical axis is maximum away from the tip immediately. In a preferred embodiment, the magnetic field distribution is provided by dual magnetic lens which provides an anti-symmetric magnetic field at the tip, such that magnetic field at the tip is zero.
摘要:
This invention provides a charged particle source, which comprises an emitter and means of generating a magnetic field distribution. The magnetic field distribution is minimum, about zero, or preferred zero at the tip of the emitter, and along the optical axis is maximum away from the tip immediately. In a preferred embodiment, the magnetic field distribution is provided by dual magnetic lens which provides an anti-symmetric magnetic field at the tip, such that magnetic field at the tip is zero.
摘要:
When an emission current is changed, a decrease in brightness of an electron beam is prevented. An electron gun includes a cathode that emits thermoelectrons, a Wehnelt electrode that focuses the thermoelectrons, a control electrode that extracts the thermoelectrons from a distal end of said cathode, an anode that accelerates the thermoelectrons and irradiates a powder with the thermoelectrons as an electron beam, and an optimum condition collection controller that changes at least one of a bias voltage to be applied to the Wehnelt electrode and a control electrode voltage to be applied to the control electrode, and decides a combination of the bias voltage and the control electrode voltage at which the brightness of the electron beam reaches a peak.