Abstract:
A method for heat treatment of an electric power cable, the electric power cable including a polymer-based electrical insulation system with a polymer composition. The method steps include placing the electric power cable having the polymer-based electrical insulation system into a heating chamber and exposing the polymer-based electrical insulation system to a heat treatment procedure when the electric power cable is located in the heating chamber. The step of placing the electric power cable into the heating chamber includes winding the electric power cable about a substantially vertical center axis to form a substantially horizontal first layer of a plurality of substantially horizontal turns of the electric power cable, winding the electric power cable about the center axis to form a plurality of substantially horizontal second layers, each second layer being formed by a plurality of substantially horizontal turns of the electric power cable and stacking the plurality of horizontal second layers above the first layer. An apparatus is provided for performing the method.
Abstract:
A method in the manufacturing of an insulated electric high voltage DC termination or joint includes the steps of providing an insulated electric high voltage DC cable including an inner conductor; a polymer based insulation system, the polymer based insulation system comprising an insulation layer and a semiconducting layer; and an outer grounding layer; removing the grounding layer and the semiconducting layer in at least one end portion of the high voltage DC cable, thereby exposing the insulation layer in the at least one end portion of the high voltage DC cable; covering the insulation layer of the polymer based insulation system in the at least one end portion of the high voltage DC cable by a cover impermeable to at least one substance present in the insulation layer of the polymer based insulation system in the at least one end portion of the high voltage DC cable in a non-homogenous distribution; subjecting the insulation layer of the polymer based insulation system in the at least one end portion of the high voltage DC cable for a heat treatment procedure, while being covered by the cover, thereby equalizing the concentration of the at least one substance in the insulation layer of the polymer based insulation system in the at least one end portion of the high voltage DC cable; and removing the cover. Instead of using a temporary cover, which is later removed, as the impermeable barrier, a field grading adapter or joint body mounted at the end of the DC cable during the manufacturing of the high voltage DC termination or joint may be used.
Abstract:
A metallized film capacitor element includes a plurality of concentrically arranged cylindrical sub-elements, each sub-element including at least one metal coated dielectric film wound in a plurality of turns. The capacitor element further includes one or more thermally conductive sections provided between the sub-elements. Each of the thermally conductive sections includes a sheet wound at least one turn and having a higher thermal conductivity than the metal coated dielectric film of the sub-elements. A thermally conducting film is provided for improving the thermal conductivity of electrical power components. The thermally conducting film includes an electrically insulating film and thermally conductive and electrically insulating particles disposed on at least one side of the film.
Abstract:
An apparatus and a method for jointing a first optical fiber and a second optical fiber, the apparatus includes a composite cable, where the composite cable includes an electric power cable, a first optical fiber cable including the first optical fiber, and a second optical fiber cable including the second optical fiber, wherein the apparatus includes a first routing device and a second routing device, each routing device being arranged to change the direction of a fiber optic path from a first axis to a second axis and including a first optical fiber portion aligned with the first axis, a second optical fiber portion aligned with the second axis, and an intermediate optical fiber portion integral with the first and second optical fiber portions and extending through an arc between the first and second optical fiber portions, the intermediate optical fiber portion in the region of the arc having a reduced diameter in relation to the diameter of the first and second optical fiber portions, wherein the first optical fiber is optically connected to the first optical fiber portion of the first routing device, wherein the second optical fiber is optically connected to the first optical fiber portion of the second routing device, and wherein the second optical fiber portion of the first routing device is optically connected to the second optical fiber portion of the second routing device.
Abstract:
A voltage source converter includes a number of valves, the valves including switching elements with anti-parallel diodes provided in a bridge for switching between two states. The bridge is provided in at least one phase leg that stretches between two direct current poles and has at least one midpoint, which is connected to an alternating current terminal. The switching element of at least one valve is a thyristor. The converter further includes a commutation cell associated with the valve, where the commutation cell is controllable to reverse-bias the valve if it is to stop conducting current.
Abstract:
It is presented a converter arm for power conversion. The converter arm comprises: a plurality of converter cells, wherein each converter cell comprises a plurality of semiconductor switches, an energy storage element and at least three control signal connections arranged to control the conducting state of the plurality of semiconductor switches. Each converter cell is connected to receive a control signal from at least three entities via said control signal connections, wherein at least two of the three entities are neighbouring converter cells, and each converter cell is arranged to forward a control signal to all connected neighbouring converter cells via said control signal connections. A corresponding converter device is also presented.
Abstract:
It is presented a converter device arranged to convert power between a first high voltage direct current, HVDC, connection, a second HVDC connection and an AC connection. The converter device comprises: a first power converter comprising a phase leg provided between terminals of the first HVDC connection, the phase leg comprising a positive arm, an inductor, an AC connection and a negative arm. Each one of the positive arm and the negative arm comprises converter cells and one of the converter cells is a first host converter cell. Each converter cell comprises two main switching elements and a storage element, the two switching elements being arranged serially in parallel with the energy storage element. The converter device also comprises a power converter section comprising a first converter cell comprising at least two switching elements connected serially in parallel with the energy storage element of the first host converter cell. The converter device is arranged to control the switching elements of the first switching element string in dependence of the state of the main switching elements of the first host converter cell.
Abstract:
A circuit breaker including a first and a second contact movable relative each other between an open position, in which the contacts are at a distance from each other, and a closed position, in which the contacts are in electrical contact with each other. The first contact includes one or more contact elements adapted to be in electrical contact with the second contact when the contacts are in the closed position, and a mesh made of metal arranged in thermal contact with the contact elements. The mesh is arranged to at least partly surround the contact elements to allow heat to conduct from the contact elements to the mesh.
Abstract:
A switching module, intended to be used in a medium or high voltage DC breaker or a DC current limiter, includes at least one power semiconductor switching element, a gate unit arranged to turn the at least one power semiconductor switching element on and off, respectively, according to a switching control signal, and an energy storage capacitor arranged to provide power to a power supply input of the gate unit. The switching module further includes a power transformation device arranged to receive an optical power signal, to transform the optical power signal into an electrical power signal and to provide the electrical power signal to the energy storage capacitor.
Abstract:
The invention discloses a voltage source converter and a voltage source converter system. The voltage source converter comprises: a multi-level voltage source converter, being adapted to output a multiple levels of a first voltage at one of two first output terminals through a multiple of first conducting paths; a first energy store; and a first switching element, being arranged to directly connected with the first output terminal, and being adapted to switch the first energy store in or out of the first conducting path so as to combine a level of the voltage of the first energy store with the level of the first voltage as a second voltage output at a second output terminal. By having the topology as above, the voltage class of each of the power semiconductors can be kept lower with the number of the power semiconductors unchanged. Besides, VDRM is lowed as compared to conventional topology. This renders the reduction of the cost and the increase of the liability.