Abstract:
Various turbidimeters are described that can detect light directly in a substantially circular, e.g., encompassing, manner such that an increased amount of scattered light from a sample vial may be detected by a light detector, e.g., a photodiode or photodiode array. In an embodiment, a substantially circular photodiode array is provided to directly detect scattered light in an arc about the sample vial. In other embodiments, light guides are provided in an arc element that guides light to a detector or detectors. Other aspects are described and claimed.
Abstract:
An embodiment provides a method for measuring velocity and depth of fluid flow in a channel, including: transmitting, using a transmitter, directed energy comprising a single energy beam slant-wise toward a surface of a fluid in a fluid channel producing a plurality of reflections, wherein the transmitting comprises modulating a frequency associated with the single energy beam; detecting, at a receiver, received signals from the plurality of reflections; and determining, based upon differences between parameters of the transmitted single energy beam and parameters of the received signals, the velocity of the fluid and the depth of the fluid. Other embodiments are described and claimed.
Abstract:
A method of measuring nitrate concentration in an aqueous sample includes mixing the aqueous sample with a water-soluble thioether chosen to reduce nitrate in the aqueous sample to nitrite in the presence of a water soluble catalyst, and a water soluble reagent system adapted to interact with nitrite to generate a color; measuring color generation, and correlating the color generation to nitrate concentration.
Abstract:
Various turbidimeters are described that can detect light directly in a substantially circular, e.g., encompassing, manner such that an increased amount of scattered light from a sample vial may be detected by a light detector, e.g., a photodiode or photodiode array. In an embodiment, a substantially circular photodiode array is provided to directly detect scattered light in an arc about the sample vial. In other embodiments, light guides are provided in an arc element that guides light to a detector or detectors. Other aspects are described and claimed.
Abstract:
Described is a lab-on-a-chip device and a method of employing a lab-on-a-chip device for determining the concentration of species present in the water.
Abstract:
An embodiment provides a permanent sealing assembly for a container, such as a reagent bottle. The permanent sealing assembly allows for drip-less reagent container exchange for liquid analysis instruments. The permanent sealing assembly may be integrated into a container, such as a reagent bottle, and provides an outflow tube that extends into the container. The permanent sealing assembly and the outflow tube thereof remain in the container such that, on an exchange of regent containers, a removable cap assembly of the liquid analysis instrument may be affixed to a new container of reagent without the risk of reagent from the old container contacting the surroundings. Other aspects are described and claimed.
Abstract:
A test element (10) used to determine concentration levels of free and total chlorine in a water sample comprises a test pad (12) adhered to a substrate (14), wherein the test pad (12) is impregnated with a stabilized DPD solution. The test pad (12) is color responsive to different concentration levels of chlorine in the water and compared to a color chart to determine the level of free chlorine and/or total chlorine in the water. The stabilized DPD solution may include N,N-diethyl-p-phenylenediamine oxalate salt, a polymeric anhydride such as a methyl-vinyl anhydride and an organo-sulfate such as dimethylsulfone.
Abstract:
An embodiment provides a cuvette apparatus including: a lid and a body, the body including a fluid channel disposed therein; and the lid including at least one opening aligned with a portion of the fluid channel, thereby providing access to the fluid channel in the body. Other aspects are described and claimed.
Abstract:
Described is an apparatus and method employing one or more environmental instruments in communication with a communication server that monitors the operation of the environmental instruments based on a task schedule.