Abstract:
A MEMS switch comprises a top conductor and at least one first insulator layer having a lateral opening. The at least one first insulator layer hermetically seals the top conductor. At least one second insulator layer is positioned below the at least one first insulator layer such that at least one vacuum gap is formed within the lateral opening between the top conductor and the at least one second insulator layer. The at least one vacuum gap has a thickness in the range 0.5 Å to 100 Å when the top conductor is at rest. The thickness of the at least one vacuum gap varies when the top conductor is moved. The insulator layer has at least one opening that exposes a conducting area of at least one contact conductor within the second insulator layer. At least one actuation conductor that is electrically insulated from the at least one contact conductor such that application of at least one actuation voltage to the at least one actuation conductor moves the at least one contact conductor and the top conductor closer to each other within the at least one vacuum gap.
Abstract:
A MEMS device comprises first and second opposing electrodes (42,46), wherein the second electrode (46) is electrically movable to vary the electrode spacing between facing first sides of the first and second electrodes. A first gas chamber (50) is provided between the electrodes, at a first pressure, and a second gas chamber (52) is provided on the second, opposite, side of the second electrode at a second pressure which is higher than the first pressure. This arrangement provides rapid switching and with damping of oscillations so that settling times are reduced.
Abstract:
An electrostatically actuatable micro electromechanical device is provided with enhanced reliability and lifetime. The electrostatically actuatable micro electromechanical device comprises: a substrate, a first conductor fixed to the top layer of the substrate, forming a fixed electrode, a second conductor fixed to the top layer of the substrate, and a substrate area. The second conductor is electrically isolated from the first conductor and comprises a moveable portion, suspended at a predetermined distance above the first conductor, the moveable portion forming a moveable electrode which approaches the fixed electrode upon applying an actuation voltage between the first and second conductors. The selected substrate surface area is defined as the orthogonal projection of the moveable portion on the substrate between the first and second conductors. In the substrate surface area at least one recess is provided in at least the top layer of the substrate.
Abstract:
A MEMS device comprises first and second opposing electrode arrangements (22,28), wherein the second electrode arrangement (28) is electrically movable to vary the electrode spacing between facing sides of the first and second electrode arrangements. At least one of the facing sides has a non-flat surface with at least one peak and at least one trough. The height of the peak and depth of the trough is between 0.01t and 0.1t where t is the thickness of the movable electrode.
Abstract:
Methods for designing a micro electromechanical device are disclosed. In one embodiment, the method comprises extending a floating element between a first anchor point and a second anchor point. The floating element includes a predetermined reference portion. The method further comprises determining a first location for a first stress relieving element on a first flexible section located between the first anchor point and the reference point, and determining a second location for a second stress relieving element on a second flexible section located between the second anchor point and the reference point. The method additionally comprises placing the first and second stress relieving elements at the first and second determined locations, respectively, thereby causing the reference portion to be located within a predetermined reference plane while in at least one predetermined state.
Abstract:
A MEMS element of an aspect of the present invention including a first electrode provided on a substrate, a second electrode which is provided above the first electrode and which is driven toward the first electrode, an anchor provided on the substrate, a beam which supports the second electrode in midair, one end of the beam being connected to the anchor and the beam including a sidewall part provided at its end in the width direction, the sidewall part having a downward-facing protrusion.
Abstract:
The invention relates to a microsystem comprising a deformable bridge, the ends of which are connected to a substrate. According to the invention, at least one actuation electrode, which is solidly connected to the bridge, is disposed between the center of the bridge and one of the ends next to a counter electrode which is solidly connected to the substrate. The electrodes are intended to deform the deformable bridge such that a lower face of the bridge comes into contact with a contact element formed on the substrate.
Abstract:
A method for manufacturing a micro-electromechanical systems (MEMS) device, comprising providing a base layer (10) and a mechanical layer (12) on a substrate (14), providing a sacrificial layer (16) between the base layer (10) and the mechanical layer (12), providing an etch stop layer (18) between the sacrificial layer (16) and the substrate (14), and removing the sacrificial layer (16) by means of dry chemical etching, wherein the dry chemical etching is performed using a fluorine-containing plasma, and the etch stop layer (18) comprises a substantially non-conducting, fluorine chemistry inert material, such as HfO2, ZrO2, Al2O3 or TiO2.
Abstract translation:一种用于制造微机电系统(MEMS)装置的方法,包括在基底(14)上提供基底层(10)和机械层(12),在基底层(10)之间提供牺牲层(16) 和所述机械层(12),在所述牺牲层(16)和所述衬底(14)之间提供蚀刻停止层(18),以及通过干法化学蚀刻去除所述牺牲层(16),其中所述干化学蚀刻 使用含氟等离子体进行,并且蚀刻停止层(18)包括基本上不导电的氟化学惰性材料,例如HfO 2,ZrO 2,Al 2 O 3或TiO 2。
Abstract:
A quick response/low voltage driven electromechanical switch equipped with a mechanism for adjusting a spring constant of a movable electrode is provided. The electromechanical element includes a first electrode formed on a substrate, a second electrode formed at a predetermined interval to the first electrode so that the interval is changed, and supporting portions for supporting the second electrode, wherein the supporting portions of the second electrode are able to be displaced.
Abstract:
An example of the present invention is a micromechanical device including, a substrate in which a signal line is provided, a micromachine which is mounted on the substrate, is formed of a conductive material into a beam-like shape, is elastically deformed by a function of an electric field in such a manner that the beam-like part moves closer to or apart from the signal line, and changes the electric characteristics concomitantly with the deformation, a deformation restraint section constituted of a material having a higher viscosity coefficient than the conductive material, provided on the opposite side of the micromachine to the signal line, for restraining deformation of the micromachine in a direction in which the micromachine is separated from the signal line, and a sealing body provided on the principal surface of the substrate, for covering the micromachine with a hollow section located therebetween.