Abstract:
A balance correction device is supported within a hollow article, such as a driveshaft assembly for a vehicular drive train system, to balance the article for rotation. The balance correction device includes a first disc having a first slot provided therein and a second disc having a second slot provided therein. Portions of the first and second slots are axially aligned with one another. An object, such as a ball, is received within the axially aligned portions of the first and second slots. The first and second discs can be positioned relative to one another to position the object relative to the unbalanced article to balance the unbalanced article for rotation.
Abstract:
A collapsible shaft having a unitary tube having an outer portion and a depressed portion dividing the outer portion into two segments. The outer portion has an outer exterior radius (Ro). The depressed portion has a depressed exterior radius (Rd). The Ro is greater than the Rd and the difference between the Ro and Rd is a depressed depth (Dd).
Abstract:
The present invention provides a rotor shaft, comprising: a rod member (26); and a plurality of separately formed component parts (such as a compressor wheel 10, a turbine wheel 11 and a rotor 14 of an electric generator) through which the rod member extends so that the plurality of component parts are joined together on an axis of the rod member, wherein mutually facing axial end surfaces of adjoining ones of the plurality of component parts are formed with annular projections (22, 23) having a substantially same radial dimension (or thickness) such that an outer circumferential surface of the annular projection of one component part can tightly contact an inner circumferential surface of the annular projection of an adjoining component part.
Abstract:
A propeller shaft assembly includes a thin-walled tubular member, a connecting member fixed to each end of the tubular member, and a support member fixed within the tubular member. The support member includes a plurality of radial elements extending a first length (L1) within the tubular member and engaging an interior surface of the tubular member to increase the bending frequency of the propeller shaft assembly. In one example, the support member includes a central hub coaxially located within the tubular member and the radial elements extend from the central hub to the interior surface of the tubular member. The radial elements can include enlarged end portions for engaging the interior surface of the tubular member. The radial elements, at their ends, can also include either axial or circumferential grooves which act as an adhesive reservoir.
Abstract:
A method for producing aluminum drive shafts from molten aluminum alloy using a continuous caster to cast the alloy into a slab. The method comprises providing a molten aluminum alloy consisting essentially of 0.2 to 0.8 wt. % Si, 0.05 to 0.4 wt. % Cu, 0.45 to 1.2 wt. % Mg, 0.04 to 0.35 wt. % Cr, 0.7 wt. % max. Fe, 0.15 wt. % max. Mn, 0.25 wt. % max. Zn, 0.15 wt. % max. Ti, the remainder aluminum, incidental elements and impurities and providing a continuous caster such as a belt caster for continuously casting the molten aluminum alloy. The molten aluminum alloy is cast into a slab which is rolled into a sheet product. After solution heat treatment, the sheet product is formed into a tube having a seam which is welded to provide a seam welded tube. The seam welded tube is placed in a forming die and hydroformed to form the drive shaft.
Abstract:
For motors having a journal with one or more groove regions and a shaft for relative rotation in the journal, aspects include providing a dual tapered shaft. The shaft may be tapered by the application of a wear resistant coating at least opposite the groove regions. The coating introduces a shaft taper from near a top end and from near a bottom end towards the shaft middle. The shaft taper may provide for improved pumping efficiency. The coating may be applied in various processes such as chemical vapor deposition or physical vapor deposition to establish a thickness gradient of coating material from near the top end and near the bottom end towards the shaft middle. In one example, the coating includes a DLC coating. Additionally, shaft portions may be shielded to prevent coatings thereon.
Abstract:
In a method of manufacturing a shaft for the fluid dynamic bearing device, the shaft is formed with a plurality of grooves arranged in and around the external circumference, the surface of the grooves and external circumference with uniform roughness, and machined marks on the surface aligned in the circumferential direction, by controlling the relative vibration of a rod-shaped blank to be machined as the shaft for a fluid dynamic bearing and a grinding wheel (a machining tool) to grind the external circumference of the blank.
Abstract:
A frangible telescopic propeller shaft includes an elongated hollow cylindrical body, a reduced diameter intermediate portion along a length of the body, and at least one spin-formed transition area between the intermediate portion and the body. The transition area includes a frangible feature wherein at least a part of the cylindrical body lies over the intermediate portion such that, in response to a sufficient axial force, the frangible feature fractures to telescope the body over the intermediate portion.
Abstract:
An integral hollow type power transmission shaft is proposed which is superior in the balance between the static strength and the fatigue strength. The integral hollow type shaft is induction-hardened from the outer periphery to form a hardened layer, leaving unhardened layer at spline portions, so that at the spline portions, the hardness on the inner surface will be lower than at other portions. This increases the toughness and compressive residual stress of the shaft at the spline portions, which tend to be starting points of fatigue cracks, thus improving the balance between the static strength and the fatigue strength.
Abstract:
A method and apparatus for assembling a driveshaft, and the driveshaft itself. The driveshaft (1) includes a first attachable part (2) with a first longitudinal axis (A1), a second attachable part (3) with a second longitudinal axis (A2) as well as a tube element (4) with a curvature which is production-caused. For joining purposes, the tube element (4) is held so as to intersect a reference axis (R) in two points of its center line (M). The first attachable part (2) with its first longitudinal axis (A1) and the second attachable part (3) with its second longitudinal axis (A2) are aligned on the reference axis (R). Thereafter, the attachable parts (2, 3) are welded to the tube ends of the tube element (4), with the radial gaps between the tube element (4) and the attachable parts (2, 3) being closed.