Abstract:
A method of and apparatus for transferring gas. The method comprising expanding a process gas 101 having a first temperature to produce a first volume of the process gas that has a second temperature that is greater than the first temperature, and a second volume of the process gas that has a third temperature that is less than the first temperature. The method further comprises displacing at least some of the second volume of the process gas 102 into the receiving vessel using a piston gas, wherein the piston gas is of the same type as the process gas.
Abstract:
A method of manufacturing a high-pressure composite pressure vessel for high-pressure being at or above 70 bar (1000 PSI or 7 MPa) includes providing an expandable core vessel defining a hoop section between end domes. An aligned discontinuous fiber composite material is wrapped over the expandable core vessel aligning with a plurality of load paths present in the expandable core vessel being over the hoop section and end domes. The aligned discontinuous fiber composite material has fibers in a prepreg tape that are at least 5 mm in length to 100 mm in length or less. Next, a continuous fiber-reinforced composite is wrapped over the aligned discontinuous fiber-reinforced composite along the hoop section and not wrapped along the end domes. The expandable core vessel may be pressurized and heated to consolidate the composite overwrap. Finally, the vessel is cooled under pressure resulting in the high-pressure composite pressure vessel.
Abstract:
A storage vessel includes a plurality of storage cells arranged in series. The storage vessel defines a first port that opens into at least one of the storage cells. A fill conduit is connected to the storage vessel at the port. A valve is connected with the fill conduit and is configured to control a supply of fluid through the fill conduit to fill the storage vessel. A heat sink is disposed in the storage vessel and is configured to reduce heat of the fluid during the fill of the storage vessel.
Abstract:
A gases delivery system for medical use is disclosed that has a container configured to house a metal-organic framework material within at least one section of the container. An activation mechanism may be associated with the container. The metal-organic framework material may contain one or more substances such that the one or more substances may be released from the metal-organic framework material when energy is applied to the container via the activation mechanism. The activation mechanism may be a heating mechanism. One or more containers housing metal-organic framework materials may be used in a gases recirculation system.