Abstract:
Parametric cylindrical solar collector with an optimized secondary reconcentrator and its design process, where the geometry of the primary reflector is an evolution of the Helmet collector concept towards a discontinuous curve that allows increasing the C/Cmax concentration to over 0.52 as well as reducing the wind loads. The structure is optimized to withstand the different loads to which the collector is exposed. The collector's center of gravity is brought closer to the axis of rotation of the collector. The geometry of the secondary reconcentrator is optimized and the collection efficiency of the collector is of 100%. The secondary reconcentrator is obtained partially mirroring the glass tube that keeps the vacuum in the absorber tube.
Abstract:
In the context of a predictive daylight harvesting system data values are input regarding a plurality of variable building design parameters. The effects on a building's environmental characteristics are calculated based on the data values regarding a plurality of building design parameters. At least one of the data values is changed regarding variable building design parameters. The effects on a building's environmental characteristics are recalculated based on the data values regarding a plurality of building design parameters building heat balance.
Abstract:
When using a solar concentrator to obtain energy collected from the sun, it can be beneficial to place the concentrator accurately. As the concentrator moves, a position of the concentrator with respect to gravity can be determined, such as through the use of an inclinometer. A comparison can be made of the determined position against a desired position. The comparison can be made to determine if the concentrator should move. If a positive determination is made, then the concentrator can be moved accordingly.
Abstract:
The solar energy and solar farms are used to generate energy and reduce dependence on oil (or for environmental purposes). The maintenance and repairs in big farms become very difficult, expensive, and inefficient, using human technicians. Thus, here, we teach using the robots with various functions and components, in various settings, for various purposes, to improve operations in big (or hard-to-access) farms, to automate, save money, reduce human mistakes, increase efficiency, or scale the solutions to very large scales or areas.
Abstract:
An automated method causes a terrestrial solar cell array to track the sun. The solar cell system may include motors that adjust a position of the array along different respective axes with respect to the sun. An alignment analysis procedure, e.g., a find sun routine, is performed to ensure that the solar cell system is properly aligned with the sun during solar tracking. This procedure may sweep the solar cell system along determined paths (e.g., azimuth and elevation paths) while measuring an output parameter indicative of system performance. The measured data is analyzed to determine if the solar cell system is in misalignment in which case the solar cell system is moved into proper alignment. The alignment procedure may be implemented on a periodic basis or using triggers, and may be automatically executed or manually executed.
Abstract:
A design method for an optical sheet for solar concentration and an optical sheet for solar concentration obtained by means of the design method are disclosed. The design method is characterized in that, for a resin optical sheet for solar concentration containing an ultraviolet absorber in a base material thereof, an amount of the ultraviolet absorber to be contained in the base material is determined such that: in an accelerated degradation test by means of a metal-halide-lamp weathering test (device specification: JTM G 01:2000, Japan Testing Machinery Association), decrease in average transmittance in a wavelength range of 400 nm to 1850 nm after testing for an irradiation time T1 satisfies the following equation (1) τuv(0)+τuv(T1)>τ0(0)+τ0(T1) (1) and that decrease in transmittance at each of wavelengths in the wavelength range from a corresponding initial value after testing for the irradiation time T1 is not greater than 10%. T1 is the accelerated test time required corresponding to the actual location of use. The optical sheet of the present invention is capable of efficiently concentrating light without decrease in transmittance while being used for a long time in an environment with a large amount of ultraviolet radiation.
Abstract translation:公开了一种通过设计方法获得的用于太阳能集中的光学片的设计方法和用于太阳能集中的光学片。 该设计方法的特征在于,对于其基材中含有紫外线吸收剂的太阳能浓缩用树脂光学片,确定基材中含有的紫外线吸收剂的量,使得:在加速劣化试验中, 金属卤化物灯风化试验(装置规格:JTM G 01:2000,日本试验机械协会)的手段,在照射时间T1测试后在400nm至1850nm的波长范围内的平均透射率的降低满足以下 方程(1)τuv(0)+τuv(T1)>τ0(0)+τ0(T1)(1),并且在测试照射时间后的相应初始值的波长范围内的每个波长的透射率降低 T1不大于10%。 T1是与实际使用位置相对应的加速测试时间。 本发明的光学片能够在大量紫外线照射的环境中长时间使用而不会降低透光率而有效地集中光。
Abstract:
A device for performing solar shade analysis combines a spherical reflective dome and a ball compass mounted on a platform, with a compass alignment mark and four dots in the corners of the platform. A user may place the device on a surface of a roof, or in another location where solar shading analysis is required. A user, while standing above the device can take a photo of the device. The photographs can then be used in order to evaluate solar capacity and perform shade analysis for potential sites for solar photovoltaic systems. By using the device in conjunction with a mobile device having a camera, photographs may be taken and uploaded, to be analyzed and processed to determine a shading percentage. For example, the solar shade analysis system may calculate the percentage of time that the solar photovoltaic system might be shaded for each month of the year. These measurements and data, or similar measurements and data, may be valuable when applying for solar rebates or solar installation permits.
Abstract:
A method for mounting photovoltaic modules includes calculating a structural load of at least one photovoltaic module based on an expected mechanical load so as to determine optimal attachment locations on the at least one photovoltaic module for attachment elements. The attachment elements are disposed at the determined attachment locations so that the attachment elements extend partially over a section of the at least one photovoltaic module. The at least one photovoltaic module is attached to the substructure via the attachment elements.
Abstract:
The invention provides systems and methods for provisioning a site with an energy system such as a solar energy system. A system according to an embodiment of the invention comprises a user interface module providing a graphical user interface for receiving information from a user, for example a potential purchaser. The information includes location information for the site to be provisioned. An image retrieval module is coupled to the user interface module and to a source of geographical information. The image retrieval module retrieves at least one image of the site corresponding to the location provided by the user. A sizing module is configured to enable a user to measure an installation surface represented in the image. Energy system components are selected based on the measurements.
Abstract:
An apparatus for performing a thermal response test to determine thermo-physical properties of a geothermal heat exchange resource. The apparatus includes a geothermal heat exchanger adapted to circulate a fluid through a loop in a sample borehole in the geothermal heat exchange resource and a variable speed pumping system capable of time-dynamic control of a fluid flow rate of the fluid. A multi-stage heating system is capable of applying a series of time-dynamic heat pulses to the fluid. The apparatus further includes a fluid temperature sensor and one or more fluid pressure, fluid density and/or fluid flow rate sensors, the sensors measuring data on the properties of the fluid that are predictive of the thermo-physical properties of the geothermal heat exchange resource.