Abstract:
An image processing apparatus is disclosed which can produce refractive index distribution data with high accuracy without limiting directions in which transmitted wavefronts are measured. The image processing apparatus has a simulating section which simulates a transmitted wavefront in each of the directions to produce a second transmitted wavefront image based on first refractive index distribution data, a comparing section which produces first information indicating the result of comparison between the second transmitted wavefront image and the first transmitted wavefront image, and a changing section which changes the first refractive index distribution data based on the first information to produce second refractive index distribution data. In the apparatus, the processing in the sections is repeated using the second refractive index distribution data as the first refractive index distribution data to produce the resulting second refractive index distribution data which is used as the output refractive index distribution data.
Abstract:
Methods and related systems for determining properties of optical systems (e.g., interferometers) and/or optical elements (e.g., lenses and/or lens systems) are described. For example, information related to an optical thickness mismatch of an interferometer can be determined by providing scanning interferometry data. The data typically include obtaining one or more interference signals each corresponding to a different spatial location of a test object. A phase is determined for each of multiple frequencies of each interference signal. The information related to the optical thickness mismatch is determined based on the phase for each of the multiple frequencies of the interference signal(s).
Abstract:
The device includes receiver elements (121, 114) for receiving the ophthalmic lens; on either side of the receiver elements, firstly lighting elements (S) for illuminating the ophthalmic lens (103) installed on the receiver elements, and secondly acquisition elements (122, 125, C) for acquiring the shadow of the ophthalmic lens illuminated by the lighting elements (S); measurement elements (S, 124, C) suitable for measuring the optical deflection power exerted by the ophthalmic lens on at least one light ray and for delivering a signal representative of the deflection power; and an electronic and computer system including geometrical correction calculation instructions for deducing from the measured deflection power a corrected shape for at least a portion of the shadow of the ophthalmic lens as perceived by the acquisition elements (122, 125, C).
Abstract:
Methods and related systems for determining properties of optical systems (e.g., interferometers) and/or optical elements (e.g., lenses and/or lens systems) are described. For example, information related to an optical thickness mismatch of an interferometer can be determined by providing scanning interferometry data. The data typically include obtaining one or more interference signals each corresponding to a different spatial location of a test object. A phase is determined for each of multiple frequencies of each interference signal. The information related to the optical thickness mismatch is determined based on the phase for each of the multiple frequencies of the interference signal(s).
Abstract:
A lens meter having a simple configuration, which is capable of precisely measuring optical characteristics such as refractive power distribution in a wide range of a subject lens to be measured at a time. The lens meter has a projection unit which projects a measurement light bundle, a projection lens which projects the measurement light bundle from the projection unit onto the subject lens placed on an optical axis of the projection lens, a diaphragm having an aperture disposed between the projection unit and the projection lens, and a two-dimensional photodetector which photo-receives the measurement light bundle passed through the subject lens after passed through the aperture of the diaphragm and the projection lens, and wherein the projection unit forms a target pattern, and the aperture of the diaphragm is disposed at a front focal point of the projection lens.
Abstract:
An optical system for an automatic lens meter for measuring the refractive power of a lens to be examined. The optical system includes a light source for generating a measuring light beam, a convex collimator lens, disposed a predetermined focal distance from the light source, for collimating the measuring light beam, so that the light beam move in parallel, an expanding concave lens, disposed downstream of a lens to be examined, for expanding the measuring light beam with respect to an optic axis, a plural-apertures stop, disposed downstream of the expanding concave lens and formed with a plurality of apertures along the circumference thereof at predetermined angular intervals, for separating the measuring light beam into a plurality of measuring light beams, a prism lens in which a convex lens and a fixed prism assembly are integrally formed, disposed directly downstream of the plural-apertures stop, having the convex lens to focus the plural measuring light beams passed through the plural-apertures stop, and the same number of prisms as the number of the plural apertures to deflect the focused light beams so as to maintain the light beams in the separated beams, and an image forming lens, disposed downstream of the prism lens, for forming aperture images of the measuring light beams, passed through the prism lens, on a two-dimensional sensor array.
Abstract:
A refractive power measuring method is disclosed wherein a pattern plate 8 is disposed at a certain position in a measuring optical path in a measuring optical system 1, a measuring light emitted from a measuring light source 5 is received by a photosensor 9 through the pattern plate 8, a soft contact lens TL is disposed at a certain position in the measuring optical path, and a change of a pattern light received by the photosensor 9 is obtained to determine optical characteristic values of the soft contact lens. According to this method, the soft contact lens TL is disposed in a wet state at a certain position of the measuring optical path and scattered light resulting from scatter of the measuring light on a surface of the soft contact lens TL is received by the photosensor 9, then a state of scatter of the scattered light is determined from a change of a received light signal outputted from the photosensor 9 and there are obtained optical characteristic values when the received light signal is below a preset value.
Abstract:
A lens meter is provided which includes a light source portion (1) which emits measuring light (P) having at least three different wavelengths; a light receiving portion (3) which receives the measuring light (P) which has passed through a to-be-inspected lens immersed in a liquid (12) as a medium; an in-medium optical characteristic measuring device for measuring an optical characteristic of the lens (13) in the medium about each wavelength, based on a deviated quantity of the measuring light detected by the light receiving portion (3); a refractive index calculating device for calculating a refractive index of material of the lens (13), based on a difference of the optical characteristic of the lens in the medium among the wavelengths; and a converting device for converting the optical characteristic of the lens (13) in the medium into an optical characteristic of the lens (13) in the air, based on the refractive index calculated by the refractive index calculating device.
Abstract:
Apparatus and methods for measuring refractive power and radius of curvature of a lens are disclosed. The apparatus comprises a refractive-power measurement subsystem in combination with a curvature-radius measurement subsystem. Each subsystem has its own optical axis and includes at least two point sources of light symmetrically situated relative to the respective optical axis in a plane perpendicular to the axis. Light fluxes from the light sources pass through or reflect from, respectively, the subject lens and impinge on a light-position sensor such as a CCD. The optical axes are preferably separate but become coaxial before reaching the light-position sensor. The refractive-index measurement subsystem senses the positions of images of the light sources on the light-position sensor as affected by refraction of light fluxes passing through the subject lens relative to positions of images obtained with no lens is being measured. The curvature-radius measurement subsystem senses the positions of images of the light sources as affected by reflection of light fluxes from the lens surface relative to positions of images obtained when the surface is planar.
Abstract:
Process and apparatus for testing optical components (12) or systems which are contained in an apparatus consisting of a focusing optical system (1) and a space-resolving light detector (2) close to the focal plane thereof, it being provided that a source (3), containing a collimator (32), for a narrowly delimited precisely parallel light beam with a plane wavefront is moved rectilinearly in a plane parallel to the wavefront, at a plurality of positions of the source (3) the signal of the light detector (2) is determined, tilting movements of the source (3) perpendicular to the line direction are detected by an apparatus with a second collimator (52) and space-sensitive detector (51), and the aperture of the optical system (1) is scanned twice with line directions rotated relative to one another through approximately 90.degree., and in addition an individual line coming close to the axis of rotation is scanned in a position rotated through approximately 45.degree..