Abstract:
In general, in a first aspect, the invention features a system including an interferometer configured to direct test light to an overlay target and subsequently combine it with reference light to form an interference pattern, the test and reference light being derived from a common source, a multi-element detector, one or more optics to image the overlay target on the multi-element detector; and an electronic processor in communication with the multi-element detector. The overlay target includes a first pattern and a second pattern and the electronic processor is configured to determine information about the relative alignment between the first and second patterns.
Abstract:
A method is disclosed which includes: using a scanning interferometry system, generating a sequence of phase-shifted interferometry images at different scan positions of an object comprising a buried surface, identifying a scan position corresponding to a position of best focus for the buried surface based on the sequence of phase-shifted interferometry images of the object, and generating a final image based on the phase-shifted interferometry images and the scan position, where the interferometric fringes in the final image are reduced relative to the interferometric fringes in the phase-shifted interferometry images.
Abstract:
Disclosed is an interferometry analysis method that includes comparing information derivable from multiple interferometry signals corresponding to different surface locations of a test object to information corresponding to multiple models of the test object, wherein the multiple models are parametrized by a series of characteristics that relate to one or more under-resolved lateral features of the test object; and outputting information about the under-resolved surface feature based on the comparison.
Abstract:
In certain aspects, interferometry methods are disclosed that include providing one or more interferometry signals for a test object, wherein the interferometry signals correspond to a sequence of optical path difference (OPD) values which are not all equally spaced from one another because of noise, providing information about the unequal spacing of the sequence of OPD values, decomposing each of the interferometry signals into a contribution from a plurality of basis functions each corresponding to a different frequency and sampled at the unequally spaced OPD values, and using information about the contribution from each of the multiple basis functions to each of the interferometry signals to determine information about the test object.
Abstract:
A method is disclosed which includes: using a scanning interferometry system, generating a sequence of phase-shifted interferometry images at different scan positions of an object comprising a buried surface, identifying a scan position corresponding to a position of best focus for the buried surface based on the sequence of phase-shifted interferometry images of the object, and generating a final image based on the phase-shifted interferometry images and the scan position, where the interferometric fringes in the final image are reduced relative to the interferometric fringes in the phase-shifted interferometry images.
Abstract:
Methods and related systems for determining properties of optical systems (e.g., interferometers) and/or optical elements (e.g., lenses and/or lens systems) are described. For example, information related to an optical thickness mismatch of an interferometer can be determined by providing scanning interferometry data. The data typically include obtaining one or more interference signals each corresponding to a different spatial location of a test object. A phase is determined for each of multiple frequencies of each interference signal. The information related to the optical thickness mismatch is determined based on the phase for each of the multiple frequencies of the interference signal(s).
Abstract:
Disclosed is an interferometry analysis method that includes comparing information derivable from multiple interferometry signals corresponding to different surface locations of a test object to information corresponding to multiple models of the test object, wherein the multiple models are parametrized by a series of characteristics that relate to one or more under-resolved lateral features of the test object; and outputting information about the under-resolved surface feature based on the comparison.
Abstract:
Disclosed is a system including: (i) an interferometer configured to direct test electromagnetic radiation to a test surface and reference electromagnetic radiation to a reference surface and subsequently combine the electromagnetic radiation to form an interference pattern, the electromagnetic radiation being derived from a common source; (ii) a multi-element detector; (iii) one or more optics configured to image the interference pattern onto the detector so that different elements of the detector correspond to different illumination angles of the test surface by the test electromagnetic radiation; and (iv) an electronic processor coupled to the detector, wherein the electronic processor is configured to process information measured by the detector to determine information about a test object having the test surface. The measurements made by the detector elements provide ellipsometry/reflectometry data for the test surface.
Abstract:
A method including: providing a low coherence scanning interferometry data for at least one spatial location of a sample having multiple interfaces, wherein the data is collected using a low coherence scanning interferometer having an illumination geometry and an illumination frequency spectrum, and wherein the data comprises a low coherence scanning interferometry signal having multiple regions of fringe contrast corresponding to the multiple interfaces; and determining a distance between at least one pair of interfaces based on a distance between the corresponding regions of fringe contrast and information about the illumination geometry.
Abstract:
An optical system includes a photolithography system, a low coherence interferometer, and a detector. The photolithography system is configured to illuminate a portion of an object with a light pattern and has a reference surface. The low coherence interferometer has a reference optical path and a measurement optical path. Light that passes along the reference optical path reflects at least once from the reference surface and light that passes along the measurement optical path reflects at least once from the object. The detector is configured to detect a low coherence interference signal including light that has passed along the reference optical path and light that has passed along the measurement optical path. The low coherence interference signal is indicative of a spatial relationship between the reference surface and the object.