Abstract:
In accordance with embodiments of the present disclosure, a processing system may include a plurality of processing paths including a first processing path and a second processing path, a digital-to-analog stage output, and a controller. The first processing path may include a first digital-to-analog converter for converting the digital input signal into a first intermediate analog signal, the first digital-to-analog converter configured to operate in a high-power state and a low-power state. The second processing path may include a second digital-to-analog converter for converting a digital input signal into a second intermediate analog signal. The digital-to-analog stage output may be configured to generate an analog signal comprising a sum of the first intermediate analog signal and the second intermediate analog signal. The controller may be configured to operate the first digital-to-analog converter in the lower-power state when a magnitude of the digital input signal is below a threshold magnitude.
Abstract:
Provided is a data converter which is provided with a clock signal input part which inputs a clock signal, and an input part which inputs an input signal, a sampling part which, in response to the clock signal input to the clock signal input part, performs sampling of the input signal input to the input part, and a signal processing part which performs signal processing according to the sampling cycle and outputs an output signal, wherein when the cycle of the clock signal input to the clock signal input part becomes longer, the output signals output by the signal processing part are reduced.
Abstract:
A converter with an additional DC offset includes a switch circuit, a first capacitor, a plurality of additional capacitor cells and an operational amplifier. The converter uses a first additional capacitor cell and a second additional capacitor cell having a capacitor difference with the first additional capacitor to store two charges having different polarity and magnitude with each other, and further generate an inverted DC offset according to a difference between the two charges to compensate a DC offset.
Abstract:
Methods, systems, and apparatuses for converting a digital input signal to an analog output signal are disclosed. A first delta-sigma modulator receives a common mode reference signal and generates a common mode control signal. A data delta-sigma modulator receives a digital input signal and generates a modulated digital input signal. A shuffler receives the modulated digital input signal and the common mode control signal and generates a shuffled digital input signal. A digital to analog converter (DAC) has a plurality of tri-level unit DAC elements each receiving a corresponding portion of the shuffled digital input signal as a first input signal, and receiving second and third input signals. The tri-level unit DAC elements have first outputs coupled together generating a first output signal and second outputs coupled together generating a second output signal. An operational amplifier receives the first and second output signals and generates the analog output signal.
Abstract:
A dynamic element matching method for a multi-unit-element digital-to-analog converter having unit elements comprises several steps. An element selection probability is determined as a function of a number of the unit elements and a digital signal. Next, loop filter output signals are generated as a function of the determined element selection probability and control signals for the unit elements. Certain ones of the unit elements are selected as a function of the generated loop filter output signals. The selected certain ones of the unit elements are activated for output of the converter.
Abstract:
Continuous time analog/digital converter, comprising a sigma delta modulator (MSD1) configured to receive an analog input signal (x(t)) and comprising high-pass filtering means (MF) the chopping frequency of which is equal to half of the sampling frequency (Fs) of the quantization means (QTZ) of the modulator (MSD1).
Abstract:
A circuit includes a first digital filter H(z), a second digital filter 1 1 + H ( z ) , a third digital filter, a first and a second digital modulators, and a gain block. The first digital filter generates a first output based on a digital input and a first digital output signal. The first digital modulator generates the first digital output signal and a first error output based on the first output and a feedback error output. The gain block amplifies the first error output by a predetermined ratio, thereby generating a second error output. The second digital modulator generates a second output and a third error output based on the second error output. The second digital filter generates a second digital output signal based on the second output. The third filter generates the feedback error output based on the third error output.
Abstract:
A MASH sigma-delta modulator includes: parallel integration units in M stages configured to receive N pieces of data from a previous stage, to perform integral calculation in parallel; parallel differentiation units each configured to calculate a difference between neighboring overflows of the corresponding parallel integration unit of the integration part; and a parallel-to-serial conversion part configured to parallel-to-serial convert outputs from the differentiation part, wherein the parallel integration units receive pieces of input data in parallel, the parallel integration unit in each stage and the parallel differentiation unit in each stage perform integral calculation and differential calculation in each stage in one operation clock of a frequency 1/N times a master clock frequency, and the parallel-to-serial conversion part outputs the result of the parallel-to-serial conversion in synchronization with the master clock.
Abstract:
This specification discloses a level de-multiplexed DSM based transmitter and a method for providing the same. Broadly embodiments of the present specification enable wireless transmitters that are based on multi-level de-multiplexed DSM. A three-level de-multiplexed DSM based transmitter is disclosed as an example. More generally, the use of m-level de-multiplexed DSM is also taught, the specification thereby being enabling for broader applications to a person skilled in the art. At least one of the efficiency and linearity of transmitters can be enhanced as required for specific applications by a person of skill in the art in view of this specification and the teachings of its disclosed embodiments.
Abstract:
A multi-rate sigma delta digital-to-analog converter may include a signal input and a signal output, and multiple modulators. A first of the modulator may convert a digital input signal on the signal input to an analog output signal on the signal output. Subsequent of the multiple modulators may shape and cancel quantization noise received from a proceeding modulator. One of the modulators may operate at a higher frequency than does another of the multiple modulation loops.