Abstract:
An apparatus and method for measuring errors and event occurrences in a multi-valued data stream by using a dual decision bit error rate tester is disclosed. The Bit error rate tester (BERT) includes a plurality of decision circuits operative to provide a respective bit decision output signal in response to an input signal. The bit decision output signal magnitude information of a signal under test as measured over a sample window period. A comparator circuit is coupled to each of the plurality of decision circuits, and is operative to provide an event occurrence signal in response to the bit decision output signals from each of the plurality of decision circuits. The BERT provides the ability to supply additional information and feedback about the behavior and performance of the targeted device or subsystem being tested and to perform error measurements in non-constrained data (i.e. live data).
Abstract:
Bit error patterns for high speed data systems are generated by randomly distributing a first error pattern of G bits, output from a group of substantially uncorrelated bit error generators, into a second error pattern of N bits, where G and N are integers and G is less than or equal to N. In one embodiment, G bit error generators produce a G bit error pattern per bit period. Each bit error generator operates at a prescribed bit error rate. A distribution element randomly rearranges the order and placement of the G bits produced during a single bit period within an N bit grouping. The N bit group corresponds to N consecutive bits of data with which the error bits can be combined. Each bit error generator can be realized by a linear feedback shift register or its equivalent. Different primitive polynomials and different lengths can be used for each linear feedback shift register. In addition, outputs from fewer than all the shift register stages are utilized to generate each error bit.
Abstract:
Described are methods and circuits for margin testing digital receivers. These methods and circuits prevent margins from collapsing in response to erroneously received data, and can thus be used in receivers that employ historical data to reduce intersymbol interference (ISI). Some embodiments detect receive errors for input data streams of unknown patterns, and can thus be used for in-system margin testing. Such systems can be adapted to dynamically alter system parameters during device operation to maintain adequate margins despite fluctuations in the system noise environment due to e.g. temperature and supply-voltage changes. Also described are methods of plotting and interpreting filtered and unfiltered error data generated by the disclosed methods and circuits. Some embodiments filter error data to facilitate pattern-specific margin testing.
Abstract:
A method for performance monitoring of data transparent communication links, including a method wherein each symbol in an incoming data symbol stream is sampled at the center of each bit period to create a main line data bit stream, and concurrently sampled at a time instant displaced from the center of each bit period to create a second line data bit stream. During each bit period, the digital value of the second line data stream is compared with the digital value for the corresponding bit period in the main line. If the main line and second line digital values are the same, no error is indicated. If they are different, i.e. if, for example, the main line is bit “1” and the second line is bit zero, an error called a pseudo error is entered on a counter. The number of errors counted per number of bits or time is indicated as a pseudo error rate for each point of time displacement in the user-defined set. A pseudo error rate reference curve is independently, and previously determined and stored in a controller that indicates maximum allowable pseudo error rate data as a function of the time displacement from the center of the bit period. The values of the calculated pseudo error rate are compared with the corresponding points on the reference curve, and the deviation from the reference curve is quantified by a newly defined quantity termed a “transmission safety factor”. If this factor is below a predetermined level, an alarm/notice is activated to indicate degraded performance.
Abstract:
A method of detecting a disturbing signal for demodulating digital data, wherein, on the modulated signal transposed into baseband, the disturbing signal is detected by periodically inserting known signals by means of a fixed guard time delay ((R+I)T.sub.s) applied to the received signal prior to demodulation, and wherein said method includes: a step of estimating the square of the modulus of the cross-correlation of the received referenced signal and of the expected signal at a determined instant when the reference signal is assumed to be present; a step of estimating the square of the correlation of the received signal at the same instant, of multiplying by a coefficient which represents the square of the threshold for the estimated correlation coefficient, and of multiplying by the number of reference symbols used in a reference burst; and a step of comparing with each other the two quantities obtained simultaneously during the preceding two steps. The invention also relates to apparatus for implementing the method. The invention is particularly applicable to digital radio beams.
Abstract:
There is provided a mechanism for error detection comprising: detecting the symmetry of error distributions over adjacent time intervals and muting of a radiotelephone in response to detected loss of substantial symmetry, unless errors are attributable to valid alternative detections. It is further characterized by: detecting the symmetry of error distributions over adjacent time intervals and muting a radiotelephone as a corrective response to detected consequential asymmetry or loss of substantial symmetry (unless errors are attributable to alternative detections of valid synchronization words) and cancelling any such corrective response upon subsequent alternative detections of valid synchronization words.
Abstract:
For imitating periodic signals occurring in digital transmission systems during some operating conditions in view of the multiplex structure a word generator is proposed which includes a read-only memory from which during a test signal cycle only 4116 permutations are successively read out of a total of 65,536 possible word sizes and permutations of e.g. a 16-bit word. The remaining 61,420 permutations are generated by shifting bit-by-bit the entire packet of continuous signals so that in case of a fixed 16 bit pattern the packet starts at a different bit position during each successive cycle and after 16 cycles all 16 bit positions occur as begin state. The shift is caused by a framing bit sequence which determines the test signal cycle and whose length is aliquant to n=16.
Abstract:
The error rate of a signal is monitored by sampling an input signal with a first clock and also with second and third clocks phase delayed in equal but opposite directions with respect to the first clock, and then logically combining the first through third sampled outputs in order to obtain an error signal.
Abstract:
In order to evaluate the fidelity of a transmission line or other test object, a pseudorandom bit pattern is fed to the input end of that test object and is compared bit by bit with the pattern exiting at its output end. Since independent transmission errors are considered particularly relevant for this evaluation, in contrast to consequential errors following an initial error within a predetermined number of bit cycles, an error pulse emitted by the bit comparator causes the blocking of further error pulses for a selected time interval. The blocking may be effected by a retriggerable monoflop of adjustable off-normal period or by a presettable down counter.
Abstract:
A monitor for monitoring the performance of a digital transmission system has three level sensors for sensing at decision instants the level of a signal derived from a transmitted signal. A first of the level sensors has its threshold set at a level corresponding substantially to the eye diagram amplitude, a second has its threshold set near the upper level of the eye diagram amplitude, and the third has its threshold set near the lower level of the eye diagram amplitude. The outputs from the level sensors are connected to logic circuitry which is arranged to energize an alarm whenever the upper or lower eye amplitude level is between the thresholds of the second and third level sensors.