Abstract:
A method of providing an extruded tire tread (T) with anti-static properties. In this method, a pin (10) is coated with an electrically conductive material (M). The coated pin (10) pierces the tire tread (T) to form an opening (12) of the desired depth and then is withdrawn. During withdrawal of the pin (10), the material (M) remains in the pierced opening (12) so that a conductive body (14) is formed in the tire tread (T). The pin (10) can then be re-coated with the material (M) and the cycle repeated to produce a plurality of conductive bodies (14) in the tire tread (T).
Abstract:
This invention relates to a pneumatic rubber tire having a circumferential tread containing an outer tread rubber layer, wherein said outer tread rubber layer contains an outer tire running surface, comprised of an electrically insulating (poorly electrically conducting) rubber composition and wherein said tread additionally contains a circumferential tread component in a form of an inverted “T” configuration comprised of a relatively electrically conducting rubber composition (relative to said outer tread rubber strip) wherein the stem of said inverted “T” configured tread component extends through said outer tread rubber layer to its running surface to thereby provide a path of least electrical resistance through said outer tread strip to its running surface and wherein the base of said “T” configured tread component underlies a portion of said outer tread rubber layer and is less than, and therefore not entirely co-extensive with, the axial width of said outer tread rubber layer.
Abstract:
An object of the present invention is to provide a manufacturing method of a pneumatic tire capable of appropriately maintaining electrical conductivity performance and satisfactorily exerting improvement effect obtained by using a tread rubber blended with silica at a high ratio, and to provide such a pneumatic tire. To achieve the above object, the method of manufacturing a pneumatic tire according to the present invention comprises a step of forming an electrically non-conductive tread rubber that constitutes an outer periphery portion of the tread and a step of forming an electrically conductive layer that extends along the circumferential direction of the tire formed on the tread surface while changing the position in a width direction of the tire so as to alternately pass through a first position and a second position, and a step of forming the outer end of the sidewall rubber as viewed in a tire-diameter direction disposed on an imaginary extension line or at a point that is outer than the imaginary extension line as viewed in a tire-diameter direction, the imaginary extension line extending outwardly from a point of 15% depth of wear limit depth in a shoulder portion along the tread surface in a width direction of the tire, as well as at a point that is located at an outer side than the ground contact end as viewed in a width direction of the tire.
Abstract:
This invention relates to a tire having an electrically non-conductive tread which contains an electrically conductive rubber strip which extends through at least a portion of the tread to its running surface in a wave configured shape, and therefore not a continuous straight line within said tread, in which at least a portion of the rubber strip is in a shape of, for example, a substantially sinusoidal, cycloidal and/or zigzag form, to thereby provide a mechanical self-locking configuration between tread segments through which the rubber strip extends and divides. In particular, said tread is composed of a cap/base configuration. The outer cap layer is of a relatively electrically non-conductive rubber composition having a running surface intended to be ground-contacting. The tread base layer, underlying the tread cap layer, is of a relatively electrically conductive rubber composition and is not normally intended to be ground-contacting. A thin rubber strip, unitary with and as an extension of said tread base layer, which is thereby relatively electrically conductive, extends radially outward from said tread base layer of which at least a portion of the rubber strip is in a form of a wave-shaped configuration through, and therefore within, said tread cap layer to an outer running surface of said tread cap layer. In practice therefore, said rubber strip extends from, and as a part of, said tread base layer through said tread cap layer. In practice, said thin layer extending in said tread cap exhibits substantially at least one half an undulation, and preferably substantially at least two undulations of its wave configured shape of, for example, a substantially sinusoidal, cycloid al and/or zigzag form. The form of the individual undulations of the wave shaped configuration of the strip within the tread may be the same or different.
Abstract:
A pneumatic rubber tire containing at least one electrically conductive cord extending between its bead and tread portions to provide a path of least electrical resistance. The electrically conductive cord is comprised of at least one electrically conductive metal filament spirally wound around a centrally disposed core of at least one organic fiber. The electrically conductive cord does not extend to, and is exclusive of, an outer surface of the tire.
Abstract:
A tire having a tread composed of two non-conductive layers, each layer containing a circumferential insert of conductive mix, the inserts having a wider interface at the interface of the two layers. An apparatus for extruding a layer, provided with a conductive insert, including a main extruder for extruding a non-vulcanized, non-conductive layer, and a micro-extruder having an extrusion head, provided at its end with a nozzle, for extruding a conductive insert in the layer.
Abstract:
A tread (14) of a tire (10) includes a tread rubber layer (16). The tread rubber layer (16) has a two-layer structure including a base layer (23) and a cap layer (24). The base layer (23) is provided with a comb-shaped convex portion (26). The convex portion (26) is formed like a circle extended in the circumferential direction of the tire (10). A plurality of convex portions (26) is arranged in the axial direction of the tire (10) and is protruded in a radial direction. At least a part of the convex portions (26) is exposed to a tread surface (17) when the tire (10) is unused (brand-new). The cap layer (24) contains silica and the base layer (23) does not contain the silica.
Abstract:
A pneumatic tire having improved conductivity is disclosed herein whereby the tire is provided with at least one conductive pathway extending through the tread surface and contacting the tread cushion. Conductive pathways are created by introducing small volumes of high carbon black concentration. Such pathways provide low electrical resistance and dissipation of static charge accumulation on a motor vehicle.
Abstract:
An antistatic tire having a tread made from a first mix (MP1) and having two annular shoulders and a peripheral rolling surface, two opposite annular portions of the rolling surface being defined by outer annular surfaces of the shoulders. Each shoulder is made from a second mix (MPC), which is electrically conducting, and which, under low strain, has substantially the same rigidity as the first mix (MP1), and, under high strain, has a greater rigidity than the first mix (MP1). In a second embodiment, an electrically conducting element is inserted inside the tread. The conducting element and the shoulders both being made of an electrically conducting third mix, which, under low strain and in the cured state, has the same mechanical characteristics as the first mix in the cured state, and, under high strain, has the same mechanical characteristics as the second mix in the cured state.
Abstract:
A pneumatic tire has a tread portion including a tread cap rubber defining the tread face and a tread base rubber disposed radially inside the tread cap. The tread base rubber includes a collector part which is disposed radially inside the tread cap rubber, and discharge terminal parts each of which extends radially outwardly from the collector part to the tread face, penetrating the tread cap rubber. The insulation rubber material is compounded from: 100 parts by weight of a rubber base comprising one or more materials selected from diene rubber and copolymers of a conjugated diene monomer and an aromatic vinyl compound; 30 to 100 parts by weight of silica; and 3 to 20 parts by weight of carbon black. The first electrically conductive rubber material is compounded from: 100 parts by weight of a rubber base comprising one or more materials selected from diene rubber and copolymers of a conjugated diene monomer and an aromatic vinyl compound; 0 to 50 parts by weight of silica; and not less than 25 parts by weight of carbon black. The hardness Hs1 of the insulation rubber material is not more than the hardness Hs2 of the first electrically conductive rubber material at a temperature of 25 degrees C.