Abstract:
A container includes a top wall, side walls, and a bottom wall, designed to enclose a space for storing an insulating object, the top, side and bottom walls having internal surfaces facing the enclosed space and external surface facing away from the enclosed space; and a metallic coating layer disposed on and substantially covering external surfaces of the top, side and bottom walls.
Abstract:
A method for reducing leakage current in a semiconductor capacitor. The method includes providing a top plate for collecting charge, providing a bottom plate for collecting an opposing charge to the top plate, providing a dielectric layer for insulation between the top plate and the bottom plate, providing a top contact, providing a bottom contact, providing a plurality of vias including top level vias for connecting the top plate to the top contact, and bottom level vias for connecting the bottom plate to the bottom contact; and separating a via and an adjacent structure such that their distance is greater than a minimum via spacing requirement of a foundry design rule for a semiconductor process producing the semiconductor capacitor.
Abstract:
A method of forming an epitaxial layer of uniform thickness is provided to improve surface flatness. A substrate is first provided and a Si base layer is then formed on the substrate by epitaxy. A Si—Ge layer containing 5 to 10% germanium is formed on the Si base layer by epitaxy to normalize the overall thickness of the Si base layer and the Si—Ge layer containing 5 to 10% germanium.
Abstract:
Provided is a semiconductor device and a method for its fabrication. The device includes a semiconductor substrate, a first silicide in a first region of the substrate, and a second silicide in a second region of the substrate. The first silicide may differ from the second silicide. The first silicide and the second silicide may be an alloy silicide.
Abstract:
A system and method of processing an error diffusion half-tone image, which produces a halftone image in accordance with a continuous-tone image. The continuous tone image consists of a two-dimension array of pixels (i, j), where i, j indicate i-th row and j-th column of the image. The method includes: (A) selecting a threshold as a k-th color threshold in accordance with a value of a k-th color of a pixel (i, j); (B) comparing the value of the k-th color of the pixel (i, j) and the k-th color threshold; (C) outputting a bi-level value associated with the k-th color of the pixel (i, j) in accordance with a comparison result produced in step (B); (D) determining an error between the k-th color value of the pixel (i, j) and the bi-level value; (E) diffusing the error to k-th colors of pixels adjacent to the pixel (i, j).
Abstract:
A physical electrotherapy device comprised of a pulse switch selector; a first section pure pulse wave generating circuit; an intermittent pulse wave generating circuit; a third section high/low frequency alternating wave generating circuit; a rectifier, wave filter, and voltage stabilizer circuit; an LED output indication circuit; and a voltage regulating and efficiency enhancing output circuit. As such, the resulting electrotherapy device is non-injurious and capable of human body strengthening and health care maintenance.
Abstract:
A boost circuit capable of boosting a reference voltage into an output voltage. The boost circuit includes a main transistor electrically connected to the output voltage, an auxiliary transistor electrically connected to the output voltage, a pre-charge circuit electrically connected to the main transistor and the auxiliary transistor for pre-charging the main transistor and the auxiliary transistor, and a voltage detector electrically connected to the auxiliary transistor and the reference voltage for controlling the auxiliary transistor according to the reference voltage.
Abstract:
A microelectronic device including an insulator located over a substrate, a semiconductor feature and a contact layer. The semiconductor feature has a thickness over the insulator, a first surface opposite the insulator, and a sidewall spanning at least a portion of the thickness. The contact layer has a first member extending over at least a portion of the first surface and a second member spanning at least a portion of the sidewall.
Abstract:
A parallel DC-to-AC power inverter system is provided. The parallel DC-to-AC power inverter system has a first DC-to-AC power inverter electrically connected in parallel with a second DC-to-AC power inverter, and each of the DC-to-AC power inverters includes an input port, an output port, a switching circuit electrically connected between the input port and the output port responsive to inverter control signals to convert a DC voltage at the input port to a first AC output voltage, an inductor-capacitor filter electrically connected to the switching circuit for filtering the first AC output voltage to an AC output voltage at output port, and a controller module for detecting an inductor current at the inductor-capacitor filter to generate an AC inductor current signal, for detecting the AC output voltage at the output terminals and transforming the AC output voltage to generate a first AC reference current signal, for detecting a load current at output port to generate an AC load current signal, for generating a second AC reference current signal by adding the first AC reference current signal to the AC load current signal, for performing a numerical operation of the second AC reference current signal of the first DC-to-AC power inverter and the second AC reference current signal of the second DC-to-AC power inverter to generate an AC reference current signal, and for generating the inverter control signals responsive to the AC reference current signal and the AC inductor current signal by sensing the inductor current at the inductor-capacitor filter. The related methods are also discussed.
Abstract:
A semiconductor device (100), including a dielectric pedestal (220) located above and integral to a substrate (110) and having first sidewalls (230), a channel region (210) located above the dielectric pedestal (220) and having second sidewalls (240), and source and drain regions (410) opposing the channel region (210) and each substantially spanning one of the second sidewalls (240). An integrated circuit (800) incorporating the semiconductor device (100) is also disclosed, as well as a method of manufacturing the semiconductor device (100).