Abstract:
A photoresist composition for forming a color filter, the composition including a binder resin, a monomer, a photo initiator, a dye compound including epoxy group, and an organic solvent.
Abstract:
A microwave resonant cavity is provided. The microwave resonant cavity includes: a sidewall having a generally cylindrical hollow shape; a gas flow tube disposed inside the sidewall and having a longitudinal axis substantially parallel to a longitudinal axis of the sidewall; a plurality of microwave waveguides, each microwave waveguide having a longitudinal axis substantially perpendicular to the longitudinal axis of the sidewall and having a distal end secured to the sidewall and aligned with a corresponding one of a plurality of holes formed on the sidewall; a top plate secured to one end of the sidewall; and a sliding short circuit having: a disk slidably mounted between the sidewall and the gas flow tube; and at least one bar disposed inside the sidewall and arranged parallel to the longitudinal axis of the sidewall.
Abstract:
Disclosed herein is a variable capacitor and its driving method, the variable capacitor including, a movable first electrode; and a second electrode formed with an insulating film, fixed in place, and its insulating film contacting the first electrode that is moved.
Abstract:
A gas conversion system using microwave plasma is provided. The system includes: a microwave waveguide; a gas flow tube passing through a microwave waveguide and configured to transmit microwaves therethrough; a temperature controlling means for controlling a temperature of the microwave waveguide; a temperature sensor disposed near the gas flow tube and configured to measure a temperature of gas flow tube or microwave waveguide; an igniter located near the gas flow tube and configured to ignite a plasma inside the gas flow tube so that the plasma converts a gas flowing through the gas flow tube during operation; and a plasma detector located near the gas flow tube and configured to monitor the plasma.
Abstract:
A display device includes a first substrate including pixels and sensing electrodes corresponding with the pixels, and a second substrate facing the first substrate. The second substrate includes an organic layer with a black matrix dividing the pixels and a sensing spacer opposite to the sensing electrode. The organic layer including the black matrix and the sensing spacer may be formed in a single process using organic photoresist material. A mask includes a light-intercepting pattern including slits to block a portion of ultraviolet light emitted towards a photoresist layer to form the black matrix. The mask also includes a pattern to block ultraviolet light in a region corresponding to the sensing spacer if a negative type photoresist material is used, or the mask does not block ultraviolet light in the region corresponding to the sensing spacer if a positive type photoresist material is used.
Abstract:
A plasma generating system is provided. The plasma generating system includes: a pair of electrodes having distal ends; an electrode holder holding the pair of electrodes; a gate having a surface on which the electrode holder is slidably mounted and adapted to be controlled by sliding the electrode holder on the surface; and a resilient member secured to the gate and adapted to generate a force to close the opening. The distal ends are adapted to move into an opening of the gate as the electrode holder slides along a direction on the surface and adapted to generate an electric arc to thereby ignite plasma in a gas.
Abstract:
An optical modulator unit, an optical modulator, and a method of fabricating are provided. The optical modulator unit includes a first contact layer transmitting infrared rays, a lower reflection layer disposed on the first contact layer, an active layer, including a multiple quantum well, disposed on the lower reflection layer, and an upper reflection layer disposed on the active layer. The optical modulator includes a plurality of optical modulator units sharing the first contact layer. The method includes sequentially stacking a first contact layer, a lower reflection layer, an active layer, an upper reflection layer, and a second contact layer on a substrate; etching the second contact layer, the upper reflection layer, the active layer, and the lower reflection layer, exposing a surface of the first contact layer; forming a first electrode on the first contact layer; and forming a second electrode on the second contact layer.
Abstract:
Disclosed is an optical system. The optical system includes first to fifth lenses sequentially arranged from an object side to an image side. The optical system satisfies 1.5
Abstract:
In accordance with an aspect of the present invention, there is provided a transistor including: a substrate; a source electrode and a drain electrode formed being spaced apart from each other on the substrate; a nanostructure electrically contacted with and formed between the source electrode and the drain electrode; and a lipid membrane having an olfactory receptor protein which is formed to cover surfaces of the source electrode, the drain electrode, and the nanostructure. The olfactory receptor-functionalized transistor in accordance with an aspect of the present invention is useful for a bioelectronic nose which can detect odorants highly specifically with femtomolar sensitivity, and may be applied in various fields requiring the rapid detection of specific odorants, for example, anti-bioterrorism, disease diagnostics, and food safety.
Abstract:
A microwave resonant cavity is provided. The microwave resonant cavity includes: a sidewall having a generally cylindrical hollow shape; a gas flow tube disposed inside the sidewall and having a longitudinal axis substantially parallel to a longitudinal axis of the sidewall; a plurality of microwave waveguides, each microwave waveguide having a longitudinal axis substantially perpendicular to the longitudinal axis of the sidewall and having a distal end secured to the sidewall and aligned with a corresponding one of a plurality of holes formed on the sidewall; a top plate secured to one end of the sidewall; and a sliding short circuit. The sliding circuit includes: a disk slidably mounted between the sidewall and the gas flow tube; and at least one bar disposed inside the sidewall and arranged parallel to the longitudinal axis of the sidewall.