Abstract:
A pressure transducer including: a silicon substrate including: a first surface adapted for receiving a pressure applied thereto, an oppositely disposed second surface, and a flexing portion adapted to deflect when pressure is applied to the first surface; at least a first sensor formed on the second surface and adjacent to a center of the flexing portion, and adapted to measure the pressure applied to the first surface; at least a second gauge sensor formed on the second surface and adjacent to a periphery of the flexing portion, and adapted to measure the pressure applied to the first surface; a glass substrate secured to the second surface of the silicon wafer.
Abstract:
A method for measuring multiple pressures and a pressure sensing system for accomplishing the same. The method for measuring a plurality of pressures includes, exposing each of a plurality of pressure sensors to a corresponding plurality of environments each having a corresponding pressure to be measured, determining how frequently to measure each of the plurality of pressures, determining a sequence for utilizing the pressure sensors to measure the corresponding plurality of pressures, the sequence being dependent upon the determined frequency for each of the plurality of pressures and selectively utilizing each of the plurality of pressure sensors according to the determined sequence to measure the pressure to which it is exposed.
Abstract:
A pressure sensor assembly including semiconductor transducer elements disposed upon a diaphragm support structure, wherein the support structure is comprised of a plurality of substrate layers anodically bonded together. A groove is disposed in the support structure creating an area of reduced thickness within the support structure. The ares of reduced thickness acts as a stress concentration region. As such, the transducer elements are disposed within the areas of reduced thickness so as to efficiently monitor any deformations experienced by the support structure. The groove that creates the areas of reduced thickness is formed in each of the substrate layers, prior to bonding into the overall structure, as such a very accurately tolerance groove can be formed into structure which greatly increases the reliability of the structure.
Abstract:
The present compensating circuit operates to reduce the span shift error due to ambient temperature changes of a span resistance compensated, bridge array circuit arrangement for a semiconductor transducer employing piezoresistive sensors. The span resistance method alone cannot reduce the span shift error to less than one percent (1%) for full scale. The present compensating circuit applies a constant voltage source, derived from the voltage source applied to the transducer, to a non-inverting input to an operational amplifier. The circuit also applies an ambient temperature dependent voltage, derived from the ambient temperature dependent bridge resistance of the bridge array circuit, to an inverting input of the operational amplifier. Both inputs to the operational amplifier are fed back through a different resistance loop to control the output voltage in response to the non-linearity of the ambient temperature dependent bridge resistance. The present circuit produces a compensation voltage which counteracts the downward span shift influence of the bridge resistance, resulting in a span shift error of less than five tenths of a percent (0.5%) for full scale.
Abstract:
A pressure transducer comprising a deflecting member fabricated from a semiconducting material having a first conductivity and a negative temperature coefficient of resistance, and four piezoresistive sensors fabricated from a semiconducting material having a second conductivity opposite to the first conductivity and a positive temperature coefficient of resistance, the sensors being disposed on a first surface of the deflecting member whereby the sensors are to be coupled to form a Wheatstone bridge configuration, and a temperature compensating resistor network fabricated from the semiconducting material of the first conductivity whereby when the resistor network is coupled to the sensors coupled in the Wheatstone bridge configuration, and a voltage placed across the bridge and the temperature compensating resistor network, an output is provided by the bridge which is independent of changes in temperature.
Abstract:
Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.
Abstract:
An electromechanical transducer is provided, and the process for making it utilizes a piezoresistive element or gage which is dielectrically isolated from a gap spanning member and substrate upon which it is supported. The gage of the invention is a force gage and is derived from a sacrificial wafer by a series of etching and bonding steps which ultimately provide a gage with substantially reduced strain energy requirements.
Abstract:
A process wherein plurality of individual device layers having semiconductor material conductive regions extending therethrough are bonded together before or after one or more circuit elements have been fabricated on each layer. Groups of device layers are formed by electrochemically anodizing a wafer of semiconductor material. The wafer is rendered totally porous except for a series of non-porous regions extending therethrough. The wafer is then oxidized and densifted to result in a wafer having a plurality of electrically isolated extended contacts. A plurality of wafers are processed in this manner. A variety of integrated circuit devices are then formed on the surface of each wafer. Once the processing of all individual wafers is completed, each wafer is bonded to another, with the extending contact aligned to electrically interconnect each device layer. The wafers are then diced to provide a plurality of multi-level integrated circuit structures.
Abstract:
A cantilever beam transducer which is formed by a batch technique utilizing conventional semiconductor processes. The cantilever beam structure has a central aperture which is rectangular in configuration and which is bounded by thinned rib or thinned area sections on either side of the aperture. Each of these areas accommodate a piezoresistive bridge structure which may include a longitudinal and transverse piezoresistive sensor both of which are located on the same surface of the beam within the thinned areas. The resultant cantilever structure has minimum cross-axis sensitivity while the thin ribbed areas enable it to be deflected in directions perpendicular to the main beam surfaces. The cantilever structure further includes top and bottom glass sheets which are anodically bonded to the cantilever structure and which serve as bidirectional stops to prevent excessive forces from damaging the beam.
Abstract:
There is disclosed a medical transducer apparatus which employs composite planar members each of which is fabricated from a highly insulative material. The members are positioned in congruency and a first member which may be a composite member has a diaphragm area located on the surface thereof to which a piezoresistive gage is bonded. The gage is surrounded by an aperture in another member to enable leads from the gage to be directed to an interconnection and circuit board also fabricated from an insulator material. The structure provides isolation to the patient in regard to the biasing source used for the gage array and also provides isolation based on external voltage which serves to protect the transducer during operation.