Abstract:
A thin film transistor array substrate, a driving method therefore, and a liquid crystal display are disclosed. The thin film transistor array substrate includes at least a sub-pixel region formed by a gate line and a data line intersected with each other, wherein, each sub-pixel comprises a first transistor (21) of which the gate is connected with a gate line and the drain is connected with a data line and a first storage capacitor (23) of which one end is connected with the source of the first transistor (21) and the other end is connected with an output of a reference voltage, the sub-pixel further comprises a second storage capacitor (24) and a second transistor (25), wherein one end of the second storage capacitor (24) is connected with the source of the first transistor (21), and the other end of the second storage capacitor (24) is connected with the drain of the second transistor (25); the source of the second transistor (25) is connected with the output of the reference voltage, and the gate of the second transistor (25) is connected with an output of an Enable signal. Since a second storage capacitor (24) is additionally added to each sub-pixel in the thin film transistor array substrate, the capacitance of the storage capacitors during static display is increased, the voltage conversion frequency during static display is deceased, and the system power consumption is decreased.
Abstract:
The present disclosure provides a driving method for a display panel for displaying multiple frames of image to be displayed, the image to be displayed includes a plurality of image pixel units, the display panel includes a plurality of display pixel units, and the driving method includes the following steps performed when displaying each of frames of image to be displayed: detecting a grayscale value of each image pixel unit in the image to be displayed; determining whether the grayscale value of each image pixel unit is greater than a predetermined value; and providing a predetermined display voltage to a display pixel unit of the display panel corresponding to the image pixel unit, the grayscale value of which is greater than the predetermined value, the predetermined display voltage is lower than a voltage provided when the display pixel unit is driven according to the predetermined value.
Abstract:
A touch panel includes: a plurality of first touch electrodes including a plurality of first sub-electrodes electrically connected to one another and a plurality of first connecting sub-portions located between and electrically connecting every two adjacent first sub-electrodes; and a plurality of second touch electrodes including a plurality of second sub-electrodes electrically connected to one another and a plurality of second connecting sub-portions located between and electrically connecting every two adjacent second sub-electrodes. At least one first connecting sub-portion at least partially overlaps at least one second connecting sub-portion so as to form a stacked structure as a connecting portion. The touch panel includes an opening area. The plurality of connecting portions include at least one adjacent connecting portion adjacent to the opening area. A center of an orthographic projection of the adjacent connecting portion does not overlap a first intersection point and is located outside the opening area.
Abstract:
The present disclosure provides a compensation device, a display screen, a display device, and a compensation method. The compensation device includes a detection circuit and a processor. The detection circuit includes a resistance-sensitive element provided in a deformation area of the display screen. A resistance of the resistance-sensitive element changes when the resistance-sensitive element is deformed. The detection circuit is configured to detect a resistance change amount of the resistance-sensitive element. The processor is configured to obtain a drift amount of a characteristic curve of a driving transistor in the deformation area according to the resistance change amount, and adjust a driving voltage signal output to the driving transistor according to the drift amount.
Abstract:
A gate electrode and a method for manufacturing the same, and a method for manufacturing an array substrate are provided. The method for manufacturing a gate electrode may include: providing a substrate, wherein the substrate includes a gate electrode region and a non-gate electrode region; and forming a gate electrode layer on the substrate, wherein the gate electrode layer includes a conductive portion corresponding to the gate electrode region and a transparent portion corresponding to the non-gate electrode region. According to the gate electrode and the method for manufacturing the same, and the method for manufacturing an array substrate, step difference can be eliminated, thereby avoiding an influence of the step difference on the crystallization property of a polysilicon material when an Excimer Laser Annealing (ELA) process is performed on the amorphous silicon layer, and obtaining a better crystallization effect.
Abstract:
Disclosed are a pixel circuit, a display panel and a display device. The pixel circuit includes driving circuits which are in one-to-one correspondence to data lines, each driving circuit being disposed in a peripheral area of a display panel; compensating circuits which are in one-to-one correspondence to gate lines, each compensating circuit being disposed in a peripheral area of the display panel; and light emitting devices. Each compensating circuit outputs a first reference signal or a second reference signal to the corresponding driving circuit. Each driving circuit drives a corresponding light emitting device to emit light through a signal from the corresponding compensating circuit and a data signal from the corresponding data line. The pixel circuit of the present disclosure can improve the aperture ratio of a pixel unit.
Abstract:
A method for fabricating a thin film transistor includes providing a substrate (100); forming a semiconductor layer (105) over the substrate (100); forming a source-drain metal layer (106) over the semiconductor layer (105); applying one patterning process to the semiconductor layer (105) and the source-drain metal layer (106) to form an active layer (1), a source electrode (2), and a drain electrode (3); forming a gate insulating layer (101) and an interlayer insulating layer (102) that cover the active layer (1), the source electrode (2), and the drain electrode (3); applying a patterning process to the interlayer insulating layer (102) to form a first window (10) in the interlayer insulating layer (102) to expose a portion of the gate insulating layer (101); and forming a gate electrode (4) in the first window (10). An orthogonal projection of the gate electrode (4) on the substrate (100) is in an orthogonal projection of the active layer (1) on the substrate (100).
Abstract:
A thin film transistor and a method for detecting a pressure by utilizing the thin film transistor, and a touch apparatus are provided. The thin film transistor includes an active layer; a source electrode and a drain electrode, separated from each other and both connected with the active layer; a first insulation layer, staked with the active layer; and a piezoelectric layer, separated from the active layer by the first insulation layer and separated from the source electrode and the drain electrode.
Abstract:
The embodiments of this disclosure provide a luminescent complex, a luminescent material, a substrate for display and a production method thereof, and a display apparatus. This disclosure relates to the technical field of display. It is possible to increase the dispersibility of the luminescent particles, such as quantum dots or the like in the main material of a color filter to solve problems, such as uneven light emission, low light emission efficiency or the like of a substrate for display comprising the luminescent particles, so as to further reduce the loss of the back light brightness. This luminescent complex comprises a luminescent particle; an organic ligand attached to the surface of the luminescent particle; group A in the structural formula of the organic ligand is a binding group which binds to the luminescent particle; and in the structural formula of the organic ligand, the carbon-carbon double bond which is attached to the X1 group, the X2 group and the X3 group may be subjected to a crosslinking reaction with a photosensitive resin under an exposure condition. This disclosure further provides a luminescent material which is used for the luminescent complex and comprises the luminescent complex, a substrate for display comprising this luminescent material, and a production method of a display apparatus.
Abstract:
A manufacturing method of an array substrate, an array substrate and a display device are provided. The method includes the following operations: forming a light shielding layer formed of a metal blacken production on a base substrate, wherein the metal blacken production is a product by blackening a metal; forming a preset film layer on the base substrate which is provided with the light shielding layer; forming both a pattern of the light shielding layer and a pattern of the preset film layer through one patterning process. The method of forming a pattern of the light shielding layer and a pattern of the preset film layer through one patterning process saves one patterning process.