Abstract:
The present application provides a display substrate having a plurality of subpixel areas. The display substrate includes a base substrate; a plurality of thin film transistors on the base substrate; and a plurality of semiconductor junctions configured to shield light from irradiating on active layers of the plurality of thin film transistors.
Abstract:
A display substrate, a display device, and a method of forming a display substrate are provided. The display substrate includes: a flexible base substrate and a plurality of pixel islands arranged on the flexible base substrate, where the plurality of pixel islands are arranged in an array, two adjacent pixel islands are connected through an island bridge, display units are arranged on the pixel islands, the display units on the pixel islands are electrically connected through an inter-island connection line arranged on the island bridge, a region outside the pixel islands and the island bridge is a hollow area, and axes of four island bridges around the hollow area are arranged as a parallelogram.
Abstract:
The present disclosure provides a transistor, an array substrate and a method of manufacturing the array substrate, and a display device. The method of manufacturing the array substrate comprises: depositing a plurality of silicon oxide layers on an active layer of a transistor; and depositing a silicon oxynitride layer over the plurality of silicon oxide layers.
Abstract:
The present disclosure discloses an X-ray flat-panel detector and a method for preparing the same, and a white insulating material. The X-ray flat-panel detector includes: a thin-film transistor substrate; an insulating reflection layer, which is provided on the thin-film transistor substrate and has a reflection function, wherein the insulating reflection layer is provided with a contact hole through which a source electrode of the thin-film transistor substrate is exposed; a pixel electrode, which is provided on the insulating reflection layer, wherein the pixel electrode is electrically connected to the source electrode of the thin-film transistor substrate via the contact hole; a photodiode, which covers the pixel electrode; an electrode, which is provided on the photodiode; and an X-ray conversion layer, which is provided on the electrode.
Abstract:
The present disclosure discloses a pixel structure and a preparation method thereof, a pixel display method and an array substrate. The pixel structure comprises: a thin film transistor TFT for controlling a Micro-Electro-Mechanical System MEMS switch; the Micro-Electro-Mechanical System MEMS switch being used for controlling transmission amount of outgoing light of a quantum dot light emitting diode QLED device; the quantum dot light emitting diode QLED device being a top emission type for emitting light constantly based on a constant light emitting driving signal.
Abstract:
The present disclosure provides an X-ray flat panel detector including: a base substrate; thin film transistors (TFTs), a pixel electrode layer, photodiodes, a transparent electrode layer, and an X-ray conversion layer which are arranged on the base substrate; and an electric field application portion configured to generate an electric field, wherein the photodiodes are arranged in the electric field, and a moving direction of negative charges when visible light rays are converted to electrical signals by the photodiodes is substantially same as a direction of the electric field. In this detector, it is applied a direction of the electric field which is substantially same as the moving direction of negative charges in the photodiode, so that movement of holes and electrons of the photodiode may be accelerated under an influence of the electric field, and thus the electrical signal may promptly arrive at the pixel electrode. As a result, it is improved the quantum detection efficiency and the sensitivity of the X-ray flat panel detector.
Abstract:
A preparation method of an oxide thin-film transistor is disclosed, and this method includes: forming a gate electrode, a gate insulating layer, an active layer, a source electrode and a drain electrode; forming of the active layer, the source electrode and the drain electrode includes: sequentially forming an oxide semiconductor thin film and a source-drain electrode metal thin film on a base substrate, an entire surface of the oxide semiconductor thin film being in direct contact with the source-drain electrode metal thin film; and patterning the oxide semiconductor thin film and the source-drain electrode metal thin film with a dual-tone mask so as to form the active layer, the source electrode and the drain electrode by a single patterning process.
Abstract:
A thin film transistor, a manufacturing method thereof and an array substrate are provided. The thin film transistor comprises: a gate electrode (11), a source electrode (15) and a drain electrode (16), and the thin film transistor further comprises a buffer layer (11) which is directly provided at one side or both sides of at least one of the gate electrode (11), the source electrode (15) and the drain electrode (16), wherein, the buffer layer (11) and at least one of the gate electrode (11), the source electrode (15) and the drain electrode (16) directly contacting the buffer layer (11) are conformal. Therefore, the adhesion between an electrode of the thin film transistor and a film layer contacting it is improved and at the same time an atom in the electrode of the thin film transistor is effectively prevented from diffusing to the film layer connected with it, and the reliability of the thin film transistor is improved and the production cost is reduced.
Abstract:
The present disclosure discloses a pixel structure and a preparation method thereof, a pixel display method and an array substrate. The pixel structure comprises: a thin film transistor TFT for controlling a Micro-Electro-Mechanical System MEMS switch; the Micro-Electro-Mechanical System MEMS switch being used for controlling transmission amount of outgoing light of a quantum dot light emitting diode QLED device; the quantum dot light emitting diode QLED device being a top emission type for emitting light constantly based on a constant light emitting driving signal.
Abstract:
An array substrate and a manufacturing method therefor, and a display apparatus are provided. The array substrate includes an underlay substrate, and at least one first transistor, at least one data line and at least one pixel electrode disposed on the underlay substrate. The at least one first transistor includes a first active layer and a first gate; the first gate is located on a side of the first active layer away from the underlay substrate, and orthographic projections of the first gate and the first active layer on the underlay substrate are at least partially overlapped. The first active layer is electrically connected to the data line and the pixel electrode, respectively. The data line is located on a side of the first active layer close to the underlay substrate, and the pixel electrode is located on a side of the first gate away from the underlay substrate.