Abstract:
The present invention concerns methods and compositions for introducing miRNA activity or function into cells using synthetic nucleic acid molecules. Moreover, the present invention concerns methods and compositions for identifying miRNAs with specific cellular functions that are relevant to therapeutic, diagnostic, and prognostic applications wherein synthetic miRNAs and/or miRNA inhibitors are used in library screening assays.
Abstract:
The system (30) includes a product engager (32), a transporter (34) and a patterned depositor (36) for engaging products (38) and transporting the products (38) from the product engager (32) to the patterned depositor (36), such as between a product bagging machine (56) that forms and fills a bag (24), a conveyor that transports the bags as the products (38) and delivers them to a case packing machine as the patterned depositor (36). The product engager (32) and the patterned depositor (36) include first and second drivers (46, 48) and the transporter (34) includes an adjustable-length buffer (50) to compensate for any temporary difference between a first product delivery rate of the product engager (32) and a rate of movement of the products (38) passing from the product engager (32) along the transporter (34) to the patterned depositor (36).
Abstract:
Embodiments of systems and methods are described for dynamically tagging metrics data by a provider of computing resources. In some implementations, a requesting user or application can request the provider of computing resources to tag the metrics based on configurations and/or settings specified by the requesting user or application. The tagged metrics data can then be processed by a processing user or application at a later time.
Abstract:
An arbiter for a space switch comprising a two buffers, a media access controller having data outputs coupled to the two buffers, and two control outputs coupled to respective buffers for buffering input data at a clock rate one-half that of the input data and a switch fabric connected to the two buffers for matching buffer data throughput with switch data throughput, the arbiter comprising first and second schedulers, each scheduler includes a plurality of inputs for connection to the two buffers for receiving requests, a plurality of outputs for granting requests and a plurality of inter connections to each of the plurality of schedulers for informing them of grants and logic for logically grouping input ports associated with a bifurcate input port, logically grouping output ports associated with a bifurcate output port, establishing round robin pointers for each of two alternate clock ticks for tracking next allowable requests and on one clock tick allowing connection requests from input ports to output ports and accepting a connection request in dependence upon the grouping of the input and output ports and the round robin pointer. The arbiter can be generalized to an n-furcated switch having n-furcated ports where n is an integer greater than or equal to two.
Abstract:
The present invention concerns methods and compositions for diagnosing and/or treating vascular diseases including cancer, cardiac diseases, vascular diseases of the eye, and inflammatory diseases. The methods involve measuring the levels of one or multiple miRNAs in patient samples and using the test results to diagnose and/or predict an optimal treatment regimen for the patient. Compositions described in the invention include nucleic acids that function as miRNAs or miRNA inhibitors that can be introduced to a patient to reduce or increase vascularization as needed.
Abstract:
The present invention concerns methods and compositions for isolating, enriching, and/or labeling miRNA molecules and for preparing and using arrays or other detection techniques for miRNA analysis. Moreover, the present invention concerns methods and compositions for generating miRNA profiles and employing such profiles for therapeutic, diagnostic, and prognostic applications.
Abstract:
Embodiments concern methods and compositions involving miR-34 mimics, including miR-34a and miR-34c mimics. In some embodiments, there are double-stranded RNA molecules with modified nucleotides having an active strand with a miR-34a sequence and a complementary passenger strand. In additional embodiments, there are double-stranded RNA molecules with modified nucleotides having an active strand with a miR-34c sequence and a complementary passenger strand.
Abstract:
The present invention concerns methods and compositions for treating or assessing treatment of diseases related to mis-expression of genes or genetic pathways that can be modulated by let-7. Methods may include evaluating patients for genes or genetic pathways modulated by let-7, and/or using an expression profile to assess the condition of a patient or treating the patient with an appropriate miRNA.
Abstract:
Embodiments concern methods and compositions involving miR-124 mimics. In some embodiments, there are double-stranded RNA molecules with modified nucleotides having an active strand with a miR-124 sequence and a complementary passenger strand.
Abstract:
The present invention concerns methods and compositions involving the production or generation of siRNA mixtures or pools capable of triggering RNA-mediated interference (RNAi) in a cell. Compositions of the invention include kits that include reagents for producing or generating siRNA pools. The present invention further concerns methods using polypeptides with RNase III activity for generating siRNA mixtures or pools that effect RNAi, including the generation of a number of RNA molecules to the same target gene.