Abstract:
The invention provides genes (DEA genes) that are differentially expressed in atherosclerotic lesions and polypeptides encoded by these genes. The invention provides compositions comprising a targeting agent conjugated to a functional moiety, wherein the targeting agent selectively binds to a polypeptide encoded by one a DEA gene. The functional moiety can be an imaging agent, therapeutic agent, etc. The invention further provides methods for providing diagnostic or prognostic information related to atherosclerosis involving detecting expression or activity of an expression product of one or more of the DEA genes. The invention further provides therapeutic methods comprising administering to a subject a composition comprising a targeting agent conjugated to a functional moiety that binds selectively binds to a polypeptide encoded by a DEA gene.
Abstract:
The present disclosure provides methods and compositions for the diagnosis and treatment of inflammation, in particular, vascular pathologies. One aspect provides an array capable of detecting the expression pregnancy specific glycoproteins in a non-pregnant patient. The array optionally detects at least a second biomarker for vascular pathology. Compositions and methods including modulators of pregnancy specific glycoproteins are also provided.
Abstract:
A apparatus for covering automobile windshields includes a housing adapted to be secured to an automobile roof and a canopy movable between a retracted position substantially aligned with the housing and an extended position substantially aligned with the windshield.
Abstract:
A heater assembly can be used with a gas appliance. The gas appliance can be a dual fuel appliance for use with one of a first fuel type or a second fuel type different than the first. The heater assembly can include a pressure sensor and a plurality of valves operable by a control module dependent upon a detected fuel pressure. The valves may be solenoid valves that can reduce the available fuel delivery paths to limit fuel delivery to a burner when a higher pressure, such as detection of LP gas, is detected.
Abstract:
A heating assembly can include a locking valve with a reset switch which can include certain pressure sensitive features. These features can be configured to change from a first position to a second position based on a pressure of a fuel. The valve can be used with either a first fuel or a second fuel different from the first. The valve can become locked or be held in either the first or the second position. For example, a set fuel pressure can cause the valve to move to a closed position and the valve can become locked or held in that position. If the pressure decreases, the valve can remain in the locked position. Actuation of the reset switch can allow the valve to move to a new position, such as an open position. The locking valve can be linked to additional valves to lock them in position as well.
Abstract:
A heater assembly can be used with a gas appliance. The gas appliance can be a dual fuel appliance for use with one of a first fuel type or a second fuel type different than the first. The heater assembly can include a housing, and an actuation member. The housing has a first fuel hook-up for connecting the first fuel type to the heater assembly, a second fuel hook-up for connecting the second fuel type to the heater assembly, and an internal valve. The actuation member can control the position of the internal valve based on whether the first or the second fuel hook-up is used.
Abstract:
A heating assembly can be used with one of a first fuel type or a second fuel type different than the first. The heating assembly can include a housing have a first actuation member and a second actuation member. The first and second actuation members can be positioned within respective first and second fuel hook-ups. The first and second actuation members can be configured such that connecting a fuel source to the heater assembly moves one of the actuation members from a first position to a second position to control flow through the heating assembly.
Abstract:
A heating apparatus can have a sealed combustion chamber, a burner, and various air channels to direct air into the sealed combustion chamber and to provide heated air to the desired area or environment such as an interior room. A channel can direct a flow of air along a face of the sealed combustion chamber to cool the face. The channel can be within or outside of the sealed combustion chamber. Alternatively, or in addition, the heating apparatus can be capable of operating as a direct vent device or as a vent free device.
Abstract:
A heater assembly can be used with a gas appliance. The gas appliance can be a dual fuel appliance for use with one of a first fuel type or a second fuel type different than the first. The heater assembly can include a housing, and an actuation member. The housing has a first fuel hook-up for connecting the first fuel type to the heater assembly, a second fuel hook-up for connecting the second fuel type to the heater assembly, and an internal valve. The actuation member can control the position of the internal valve based on whether the first or the second fuel hook-up is used.
Abstract:
A heater assembly can be used with a gas appliance. The gas appliance can be a dual fuel appliance for use with one of a first fuel type or a second fuel type different than the first. The heater assembly can include a housing, and an actuation member. The housing has a first fuel hook-up for connecting the first fuel type to the heater assembly, a second fuel hook-up for connecting the second fuel type to the heater assembly, and an internal valve. The actuation member can control the position of the internal valve based on whether the first or the second fuel hook-up is used.