Abstract:
A method and system is disclosed for identification and removal of a memory sector prone to failure. The method performs satisfaction checks on the memory sector and monitors and stores returned Unsatisfied Checks (USC) for analysis by a pattern recognition algorithm. Once a first global iteration is pattern matched with a second global iteration from the sector, the method determines the period of the repetitive pattern. The method then identifies, as the sector prone to failure, the sector having the defined pattern and period. Once identified, the method uses a power management scheme to remove the sector prone to failure from further use by the memory system and displays to a user the details of the action taken.
Abstract:
Systems, circuits, devices and/or methods related to systems and methods for data processing, and more particularly to systems and methods for priority based data processing.
Abstract:
Systems, methods, devices, circuits for data processing, and more particularly to data processing including operational marginalization capability.
Abstract:
Systems, methods, devices, circuits for data processing, and more particularly to systems and methods for multi-stage encoding for concatenated low density parity check codes.
Abstract:
The present inventions are related to systems and methods for data processing, and more particularly to systems and methods for detecting patterns in a data stream.
Abstract:
The present inventions are related to systems and methods for data processing, and more particularly to systems and methods for bit error rate prediction in a data processing system.
Abstract:
An apparatus comprises read channel circuitry and associated signal processing circuitry comprising frontend processing circuitry and backend processing circuitry. The frontend processing circuitry comprises a loop detector and equalizer configured to determine an equalized read channel signal from a read channel signal and a decoding module configured to apply verification and scrambling processing on a decoded read channel signal. The backend processing circuitry comprises a backend detector, an interleaver, a backend decoder, and a de-interleaver configured to perform an iterative decoding process on the equalized read channel signal to determine the decoded read channel signal. The frontend processing circuitry is controlled by a first clock having an associated first clock rate and the backend processing circuitry is controlled by a selected one of the first clock and a second clock having an associated second clock rate determined at least in part by the first clock rate and a maximum clock rate.
Abstract:
Methods and apparatus are provided for detecting a sync mark in a storage system, such as a hard disk drive. A sync mark is detected in a storage system by obtaining one or more branch metrics from a data detector in the storage system; generating one or more sync mark metrics using the one or more branch metrics from the data detector; and identifying the sync mark based on the sync mark metrics. An input data set is optionally compared with a plurality of portions of a sync mark pattern to yield corresponding comparison values and the comparison values can be summed to obtain at least one result. A sync mark found signal is asserted based upon the at least one result.