Abstract:
Aspects of the disclosure pertain to an apparatus for detecting timing errors including an analog to digital converter circuit, a diversity loop detector and a timing error calculation circuit. The analog to digital converter circuit is operable to convert an input signal into a series of digital samples. The diversity loop detector is operable to apply a data detection algorithm to a plurality of signals derived from the series of digital samples at different phase offsets, to select one of the phase offsets, and to yield a detected output with the selected phase offset. The timing error calculation circuit is operable to calculate a timing error of the analog to digital converter circuit based at least in part on the selected phase offset.
Abstract:
Systems, methods, devices, circuits for data processing, and more particularly to systems and methods for detecting a sync mark with a ratio-adjustable detection system.
Abstract:
A data encoding system includes a data encoder circuit operable to encode each of a number of data sectors with a component matrix of a low density parity check code matrix and to yield an output codeword. The data encoder circuit includes a syndrome calculation circuit operable to calculate and combine syndromes for the data sectors.
Abstract:
A data processing system includes a digital data input operable to receive digital data, a digital data values input operable to receive values of the digital data, a loop pulse response estimation circuit operable to calculate a loop pulse response based on the digital data and the values of the digital data and based at least in part on past values of the loop pulse response, and a scaling circuit operable to scale the loop pulse response based at least in part on an absolute sum of the loop pulse response to yield a scaled loop pulse response.
Abstract:
An apparatus comprises read channel circuitry and associated signal processing circuitry comprising frontend processing circuitry and backend processing circuitry. The frontend processing circuitry comprises a loop detector and equalizer configured to determine an equalized read channel signal from a read channel signal and a decoding module configured to apply verification and scrambling processing on a decoded read channel signal. The backend processing circuitry comprises a backend detector, an interleaver, a backend decoder, and a de-interleaver configured to perform an iterative decoding process on the equalized read channel signal to determine the decoded read channel signal. The frontend processing circuitry is controlled by a first clock having an associated first clock rate and the backend processing circuitry is controlled by a selected one of the first clock and a second clock having an associated second clock rate determined at least in part by the first clock rate and a maximum clock rate.
Abstract:
Aspects of the disclosure pertain to a system and method for providing component detector switching for a diversity loop detector. Switching between component detectors is performed via one of: a periodic state likelihood reset process, a slope-based switching process, or a cross-over connection process. The joint decision circuit switches among component detectors to promote improved performance with present of constant or transition phase offset.
Abstract:
The present inventions are related to systems and methods for data processing, and more particularly to systems and methods for performing loop feedback in a data processing system.
Abstract:
Systems, methods, devices, circuits for data processing, and more particularly to systems and methods for detecting a sync mark with a ratio-adjustable detection system.
Abstract:
Aspects of the disclosure pertain to a system and method for providing component detector switching for a diversity loop detector. Switching between component detectors is performed via one of: a periodic state likelihood reset process, a slope-based switching process, or a cross-over connection process. The joint decision circuit switches among component detectors to promote improved performance with present of constant or transition phase offset.
Abstract:
A hard disk drive includes a processor to automatically adjust a threshold level for finding sync-marks. The processor determines all possible sync-mark patterns for a particular pattern length and analyzes each pattern with reference to real world data. The pattern with the largest distance gap is used. The threshold level is then adjusted dynamically to produce the lowest possible failure rate for the given pattern.