Abstract:
A method and system are presented for use in controlling the processing of a structure. First measured data is provided being indicative of at least one of the following: a thickness (d2) of at least one layer (L2) of the structure W in at least selected sites of the structure prior to the processing of the structure, and a surface profile of the structure prior to said processing. An optical measurement is applied to at least the selected sites of the structure after said processing and second measured data is generated being indicative of at least one of the following: a thickness of the processed structure (d′) and a surface profile of the processed structure, The second measured data is analyzed by interpreting it using the first measured data to thereby determine a thickness (d′1 or d′2) of at least one layer of the processed structure. This determined thickness is thus indicative of the quality of said processing.
Abstract:
Apparatus for processing substrates according to a predetermined photolithography process includes a loading station in which the substrates are loaded, a coating station in which the substrates are coated with a photoresist material, an exposing station in which the photoresist coating is exposed to light through a mask having a predetermined pattern to produce a latent image of the mask on the photoresist coating, a developing station in which the latent image is developed, an unloading station in which the substrates are unloaded and a monitoring station for monitoring the substrates with respect to predetermined parameters of said photolithography process before reaching the unloading station.
Abstract:
The present invention relates to an integrated apparatus for monitoring wafers and for process control in the semiconductor manufacturing process, by means of at least two different measurements that can be installed inside any part of the semiconductor production line, i.e., inside the photocluster equipment, the CVD equipment or the CMP equipment. The apparatus comprises a measuring unit for performing at least one optical measurement in predetermined sites on said wafer, illumination sources for illuminating said wafer via measuring unit, supporting means for holding, rotating and translating the wafer and a control unit. The measuring unit comprises: at least two measuring sub-units, one of them being normal-incidence optical measuring system.
Abstract:
A method and system are presented for monitoring a process sequentially applied to a stream of substantially identical articles by a processing tool, so as to terminate the operation of the processing tool upon detecting an end-point signal corresponding to a predetermined value of a desired parameter of the article being processed. The article is processed with the processing tool. Upon completing the processing in response to the end-point signal generated by an end-point detector continuously operating during the processing of the article, integrated monitoring is applied to the processed article to measure the value of the desired parameter. The measured value of the desired parameter is analyzed to determine a correction value thereof to be used for adjusting the end-point signal corresponding to the predetermined value of the desired parameter for terminating the processing of the next article in the stream.
Abstract:
Alignment of layers during manufacture of a multi-layer sample is controlled by applying optical measurements to a measurement site in the sample. The measurement site includes two diffractive structures located one above the other in two different layers, respectively. The optical measurements comprise at least two measurements with different polarization states of incident light, each measurement including illuminating eh measurement site so as to illuminate one of the diffractive structures through the other. The diffraction properties of the measurement site are indicative of a lateral shift between eth diffractive structures. The diffraction properties detected are analyzed for the different polarization states of the incident light to determine an existing lateral shift between the layers.
Abstract:
A method and system are presented for optical measurements in multi-layer structures to determine the properties of at least some of the layers. The structure is patterned by removing layer materials within a measurement site of the structure from the top layer to the lowermost layer of interests Optical measurements are sequentially applied to the layers, by illuminating a measurement area in the layer under measurements, when the layer material above said layer under measurements is removed, thereby obtaining measured data portions for the at least some of the layers, respectively. The properties of each of the at least some layers are calculated, by analyzing the measured data portion of the lowermost layer, and then sequentially interpreting the measured data portions of all the other layers towards the uppermost layer, while utilizing for each layer the calculation results of the one or more underlying layers.
Abstract:
Apparatus for processing substrates according to a predetermined photolithography process includes a loading station in which the substrates are loaded, a coating station in which the substrates are coated with a photoresist material, an exposing station in which the photoresist coating is exposed to light through a mask having a predetermined pattern to produce a latent image of the mask on the photoresist coating, a developing station in which the latent image is developed, an unloading station in which the substrates are unloaded and a monitoring station for monitoring the substrates with respect to predetermined parameters of said photolithography process before reaching the unloading station.
Abstract:
A method for in process monitoring of the parameters of a substrate undergoing a processing within a photolithography tools arrangement which includes substrate loading and unloading stations, and substrate coating, exposure and developing stations. The method includes the step of supplying the substrate after being developed to a monitoring station and analyzing the monitoring data to estimate the photolithography process to be used for controlling thereof.
Abstract:
An optical system is presented for use in a measurement system (100) for use in measurements of thin films of a workpiece (W), the system comprising an optical assembly (14), comprising illuminator assembly, a detector assembly, and a light directing assembly (FA-OF) for directing illuminating light to a plurality of measurement sites in the workpiece (W) arranged in an array of substantially concentric ring-like regions, such that an area defined by the measurement sites within one of the substantially concentric ring-like regions is substantially equal to that of the other substantially concentric ring-like region.
Abstract:
The present invention relates to an integrated apparatus for monitoring wafers and for process control in the semiconductor manufacturing process, by means of at least two different measurements that can be installed inside any part of the semiconductor production line, i.e., inside the photocluster equipment, the CVD equipment or the CMP equipment. The apparatus comprises a measuring unit for performing at least one optical measurement in predetermined sites on said wafer, illumination sources for illuminating said wafer via measuring unit, supporting means for holding, rotating and translating the wafer and a control unit. The measuring unit comprises: at least two measuring sub-units, one of them being normal-incidence optical measuring system.