Abstract:
Combinatorial processing including stirring is described, including defining multiple regions of a substrate, processing the multiple regions of the substrate in a combinatorial manner, introducing a fluid into a first aperture at a first end of a body to dispense the fluid out of a second aperture at a second end of the body and into one of the multiple regions, and agitating the fluid using an impeller at a second end of the body to facilitate interaction of the fluid with a surface of the substrate.
Abstract:
Methods for substrate processing are described. The methods include forming a material layer on a substrate. The methods include selecting constituents of a molecular masking layer (MML) to remove an effect of variations in the material layer as a result of substrate processing. The methods include normalizing the surface characteristics of the material layer by selectively depositing the MML on the material layer.
Abstract:
A system and method for dynamically obtaining data associated with a performance metric associated with access devices associated with a resource provider in a specific geographic location and comparing it to data associated with the performance of other access devices associated with another resource provider is disclosed. A processing server computer can perform the comparison and may provide the comparison to a user device, so that corrective action, if any, may be taken.
Abstract:
A ballast configured to connect to a set of lamps to energize the set of lamps is provided. The ballast comprises an inverter circuit for generating an oscillating power signal, wherein the oscillating power signal has a frequency, and a resonant tank circuit electrically connected to the inverter circuit for receiving the oscillating power signal and therefrom providing a lamp current to the set of lamps. A resistance circuit is connected to the inverter circuit. The resistance circuit has a resistance that defines the frequency of the oscillating power signal generated by the inverter circuit. A current control circuit is connected to the resistance circuit for adjusting the resistance of the resistance circuit as a function of a number of lamps that are connected to the ballast.
Abstract:
Techniques are described for maintaining a forwarding information base (FIB) within a packet-forwarding engine (PFE) of a router, and programming a packet-forwarding integrated circuit (IC) with a hardware version of the FIB. Entries of the hardware version identify primary forwarding next hops and backup forwarding next hops for the LSPs, wherein the packet-forwarding IC includes a control logic module and internal selector block configured to produce a value indicating a state of the first physical link. The selector block outputs one of the primary forwarding next hop and the backup forwarding next hop of the entries for forwarding the MPLS packets based on the value in response to the packet-processing engine addressing one of the entries of the FIB for the LSPs. Packets are forwarded with the PFE to the one of the primary forwarding next hop and the backup forwarding next hop output by the selector block.
Abstract:
A ballast configured to connect to a set of lamps to energize the set of lamps is provided. The ballast comprises an inverter circuit for generating an oscillating power signal, wherein the oscillating power signal has a frequency, and a resonant tank circuit electrically connected to the inverter circuit for receiving the oscillating power signal and therefrom providing a lamp current to the set of lamps. A resistance circuit is connected to the inverter circuit. The resistance circuit has a resistance that defines the frequency of the oscillating power signal generated by the inverter circuit. A current control circuit is connected to the resistance circuit for adjusting the resistance of the resistance circuit as a function of a number of lamps that are connected to the ballast.
Abstract:
A two level lighting ballast is provided, which includes a self-oscillating inverter circuit and a control circuit. The inverter includes an input; an output to selectively provide current to energize a lamp; a switching circuit operating at a switching frequency; a feedback transformer; and an impedance component. The feedback transformer is connected to the output, and drives the switching circuit based on the lamp current. The impedance component is connected in parallel with the feedback transformer, and is operated by the control circuit. When the control circuit enables the impedance component, the switching circuit operates in a first frequency range, and a first lamp current is provided. When the control circuit disables the impedance component, the switching circuit operates in a second frequency range, and a second lamp current is provided. The first frequency range is lower than the second, and the first lamp current is greater than the second.
Abstract:
Techniques to dynamically manage wireless connections using a coverage database are described. For example, a mobile computing device may comprise a connection management module operative to dynamically select a wireless connection technology based on a location of the mobile computing device and information from a coverage database, and to initiate a wireless connection using the selected wireless connection technology. Other embodiments are described and claimed.
Abstract:
A multi-strike ballast to ignite an electrodless lamp is disclosed, and includes an inverter circuit, an output voltage detection circuit (OVDC), and an inverter shutdown circuit. The inverter circuit, upon activation, sends an ignition pulse to the electrodeless lamp. The inverter circuit shut downs upon receiving a deactivation signal, and activates upon receiving an activation signal, triggering another ignition pulse. The OVDC detects an output voltage across the lamp. The inverter shutdown circuit includes a multi-strike diac and receives the detected output voltage. The multi-strike diac breaks upon the output voltage reaching a predetermined level. In response, a deactivation signal is sent to the inverter circuit. The multi-strike diac turns off upon the output voltage falling below the predetermined level. In response, an activation signal is sent to the inverter circuit, triggering a further ignition pulse. The process repeats, providing multiple ignition pulses to the lamp.
Abstract:
Methods of modifying a patterned semiconductor substrate are presented including: providing a patterned semiconductor substrate surface including a dielectric region and a conductive region; and applying an amphiphilic surface modifier to the dielectric region to modify the dielectric region. In some embodiments, modifying the dielectric region includes modifying a wetting angle of the dielectric region. In some embodiments, modifying the wetting angle includes making a surface of the dielectric region hydrophilic. In some embodiments, methods further include applying an aqueous solution to the patterned semiconductor substrate surface. In some embodiments, the conductive region is selectively enhanced by the aqueous solution. In some embodiments, methods further include providing the dielectric region formed of a low-k dielectric material. In some embodiments, applying the amphiphilic surface modifier modifies an interaction of the low-k dielectric region with a subsequent process.