Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for enhanced user equipment (UE) capability exchange for transitioning a connection from a first radio access technology system to a second radio access technology system. An exemplary method performed by a UE includes communicating with a first base station (BS) via a connection of a first radio access technology (RAT), determining, based on the first RAT, to omit a set of capabilities of the UE from capabilities information of the UE regarding a second RAT, transmitting the capabilities information of the UE regarding the second RAT to the first BS via the first RAT, communicating with a second BS via the second RAT according to the capabilities information, and sending an update of the capabilities information of the UE regarding the second RAT via the second RAT.
Abstract:
A method for reading system information blocks (SIBs) by a mobile communication device includes: reading information from a first master information block (MIB); reading information from one or more SIBs including SIB3; storing the information read from the first MIB and the one or more SIBs including SIB3; starting a validity timer; reading information from a second MIB; comparing the information read from the second MIB with the stored information from the first MIB; in response to determining that the information read from the second MIB matches the stored information from the first MIB, determining whether the validity timer has expired; and in response to determining that the validity timer has not expired, determining that the stored information read from the first MIB and the one or more SIBs including SIB3 is valid.
Abstract:
Systems, methods, and apparatuses for detecting voice distortion are disclosed. In some aspects, a communication device may decode a silence insertion descriptor (SID) frame to identify a pattern associated with the SID frame and correlate the pattern with a reference pattern for the SID frame. Based on the correlating, the communication device, in some examples, may determine whether the SID frame is de-synchronized. In one or more examples, determining whether the SID frame is de-synchronized may comprise determining that a consecutive N number of SID frames fail to match the reference pattern. Additionally or alternatively, the communication device may adjust at least one parameter to re-synchronize a voice signal associated with the SID frame upon determining that the SID frame is de-synchronized.
Abstract:
An example method may include receiving a first subframe. In addition, the example method may include decoding information transmitted in the first subframe. Further, the example method may include switching to an inactive mode subsequent to the completion of the reception of the first subframe. Further still, the example method may include exiting the inactive mode and decoding downlink data transmitted in one or more second subframes in a current reception (Rx) burst time interval when the decoded information transmitted in the first subframe indicates an upcoming transmission of downlink data in the one or more second subframes.
Abstract:
The present methods and apparatus relate to adapting a network configured timer corresponding to a user equipment (UE) capability information procedure for indicating one or more UE capabilities to a network entity, comprising determining a message size of a capability message configured for transmission from the UE to the network entity during the UE capability information procedure; and performing a timer adaptation procedure, wherein the timer adaptation procedure includes adapting the use of the network configured timer based on the message size of the capability message.
Abstract:
Methods and apparatus are described for introducing uncompressed data packets in to theinto a compression flow during compression for communication between a user equipment (UE) and a network entity, comprising placing a plurality of data packets in an uncompressed uplink queue of the UE; determining that an amount of data packets in a compressed uplink queue of the UE fails to satisfy a grant threshold; and transferring one or more of the plurality of data packets to the compressed uplink queue from the uncompressed uplink queue based on the determination that the amount of data packets in the compressed uplink queue fails to satisfy the grant threshold, wherein the one or more of the plurality of data packets in the compressed uplink queue are scheduled for transmission to the network entity as one or more uncompressed data packets.
Abstract:
A method and apparatus for radio resource control (RRC) state transitions of a user equipment (UE) are provided. For the RRC state transitions of the UE, for example, a reconfiguration message is received at the UE while the UE is in a cell dedicated channel (CELL_DCH) state of the RRC states. The reconfiguration message is configured to transition the UE from the CELL_DCH state to a non-dedicated channel state of RRC states. A plurality of acknowledgement procedures is sent on an uplink to the network, in response to the received reconfiguration message causing the UE to transition from the CELL_DCH state to the non-dedicated channel state.
Abstract:
The present disclosure presents a method and apparatus for improving uplink (UL) performance at a user equipment (UE). For example, the method may include identifying a random access channel (RACH) preamble failure when the UE is communicating with a current serving cell of the UE, increasing transmission power of successive RACH preambles based at least on the identifying, comparing signals received on a downlink at the UE via a first path and a second path from the current serving cell of the UE, and determining that a RACH preamble failure problem exists at the UE based at least on the comparing of the signals received on the downlink and identifying of successive RACH preamble failures. As such, improved performance uplink (UL) performance at a UE may be achieved.
Abstract:
Various aspects of the present disclosure enable a plurality of mobile devices (UEs) within a cell to spread out in time their respective transmissions of signaling messages, such as cell update messages, when the network enables or disables enhanced uplink (EUL, sometimes referred to as high-speed uplink packet access or HSUPA) while the UE is in the CELL_FACH state, by changing SIB5 or SIB5bis. In this way, the network load may be reduced, and a network blockage that otherwise might result from large numbers of UEs simultaneously transmitting the cell update message can be avoided. According to one example, a network node may be configured to distribute CELL_UPDATE messages or procedures to UEs when the network node enables or disables EUL in CELL_FACH by changing SIB5 or SIB5bis over time to reduce the network load. According to another example, a UE may be configured for utilizing a random timer or back-off timer to defer cell updates.
Abstract:
Techniques for prioritizing non-scheduled data are described. Non-scheduled data to be transmitted on a non-scheduled MAC-d flow having a non-scheduled priority and scheduled data to be transmitted on a scheduled MAC-d flow having a scheduled priority may be identified by a user equipment (UE). The UE may transmit the non-scheduled MAC-d flow and the scheduled MAC-d flow according to a priority condition. In one aspect, the UE may receive a pre-allocation of power associated with a non-empty non-scheduled MAC-d flow. Based on a priority condition that the non-scheduled priority is a highest priority, the UE may apply all of the pre-allocation of power when transmitting the non-scheduled MAC-d flow. In one aspect, based on a priority condition that the non-scheduled priority is a lower priority, the UE may adjust the non-scheduled priority and/or the scheduled priority so that the non-scheduled priority is a higher priority