Abstract:
A storage element includes a magnetization fixed layer, and a magnetization free layer. The magnetization fixed layer includes a plurality of ferromagnetic layers laminated together with a coupling layer formed between each pair of adjacent ferromagnetic layers. The magnetization directions of the ferromagnetic layers are inclined with respect to a magnetization direction of the magnetization fixed layer.
Abstract:
A memory element includes a layered structure: a memory layer having a magnetization direction changed depending on information, the magnetization direction being changed by applying a current in a lamination direction of the layered structure to record the information in the memory layer, including a first ferromagnetic layer having a magnetization direction that is inclined from a direction perpendicular to a film face, a bonding layer laminated on the first ferromagnetic layer, and a second ferromagnetic layer laminated on the bonding layer and bonded to the first ferromagnetic layer via the bonding layer, having a magnetization direction that is inclined from the direction perpendicular to the film face, a magnetization-fixed layer having a fixed magnetization direction, an intermediate layer that is provided between the memory layer and the magnetization-fixed layer, and is contacted with the first ferromagnetic layer, and a cap layer that is contacted with the second ferromagnetic layer.
Abstract:
A storage element includes a layer structure, which includes a storage layer including magnetization perpendicular to the film surface, in which the magnetization direction is changed corresponding to information; a magnetization fixing layer including magnetization perpendicular to the film surface that becomes a reference for information stored on the storage layer; a tunnel barrier layer made from an oxide provided between the storage layer and the magnetization fixing layer; and a spin barrier layer made from an oxide provided contacting the surface of the opposite side of the storage layer to the surface contacting the tunnel barrier layer. A low resistance region is formed in a portion of the spin barrier layer formed with a predetermined set film thickness value and information storage on the storage layer is performed by changing the magnetization direction of the storage layer by current flowing in the stacking direction of the layer structure.
Abstract:
A storage element including a storage layer configured to hold information by use of a magnetization state of a magnetic material, with a pinned magnetization layer being provided on one side of the storage layer, with a tunnel insulation layer, and with the direction of magnetization of the storage layer being changed through injection of spin polarized electrons by passing a current in the lamination direction, so as to record information in the storage layer, wherein a spin barrier layer configured to restrain diffusion of the spin polarized electrons is provided on the side, opposite to the pinned magnetization layer, of the storage layer; and the spin barrier layer includes at least one material selected from the group composing of oxides, nitrides, and fluorides.
Abstract:
A storage element includes a magnetization fixed layer, and a magnetization free layer. The magnetization fixed layer includes a plurality of ferromagnetic layers laminated together with a coupling layer formed between each pair of adjacent ferromagnetic layers. The magnetization directions of the ferromagnetic layers are inclined with respect to a magnetization direction of the magnetization fixed layer.
Abstract:
There is disclosed an information storage element including a first layer including a ferromagnetic layer with a magnetization direction perpendicular to a film face; an insulation layer coupled to the first layer; and a second layer coupled to the insulation layer opposite the first layer, the second layer including a fixed magnetization so as to be capable of serving as a reference of the first layer. The first layer is capable of storing information according to a magnetization state of a magnetic material, and the magnetization state is configured to be changed by a spin injection. A magnitude of an effective diamagnetic field which the first layer receives is smaller than a saturated magnetization amount of the first layer.
Abstract:
A storage element including a storage layer configured to hold information by use of a magnetization state of a magnetic material, with a pinned magnetization layer being provided on one side of the storage layer, with a tunnel insulation layer, and with the direction of magnetization of the storage layer being changed through injection of spin polarized electrons by passing a current in the lamination direction, so as to record information in the storage layer, wherein a spin barrier layer configured to restrain diffusion of the spin polarized electrons is provided on the side, opposite to the pinned magnetization layer, of the storage layer; and the spin barrier layer includes at least one material selected from the group composing of oxides, nitrides, and fluorides.
Abstract:
A storage element including a storage layer configured to hold information by use of a magnetization state of a magnetic material, with a pinned magnetization layer being provided on one side of the storage layer, with a tunnel insulation layer, and with the direction of magnetization of the storage layer being changed through injection of spin polarized electrons by passing a current in the lamination direction, so as to record information in the storage layer, wherein a spin barrier layer configured to restrain diffusion of the spin polarized electrons is provided on the side, opposite to the pinned magnetization layer, of the storage layer; and the spin barrier layer includes at least one material selected from the group composing of oxides, nitrides, and fluorides.
Abstract:
A storage element is provided. The storage element includes a memory layer having a first magnetization state of a first material; a fixed magnetization layer having a second magnetization state of a second material; an intermediate layer including a nonmagnetic material and provided between the memory layer and the fixed magnetization layer; wherein the first material includes Co—Fe—B alloy, and at least one of a non-magnetic metal and an oxide.
Abstract:
There is disclosed a memory element including a memory layer that has a magnetization and a magnetization direction thereof varies corresponding to information; a magnetization-fixed layer that has a magnetization; and an insulating layer that is provided between the memory layer and the magnetization-fixed layer, wherein an electron that is spin-polarized is injected in a lamination direction of a layered structure, and thereby the magnetization direction of the memory layer varies and a recording of information is performed with respect to the memory layer, and a Ta film in contact with a face of the magnetization-fixed layer, the face of the magnetization-fixed layer is opposite to the insulating layer side.