Abstract:
A hybrid stent is formed which exhibits both high flexibility and high radial strength. The expandable hybrid stent for implantation in a body lumen, such as a coronary artery, consists of radially expandable cylindrical rings generally aligned on a common longitudinal axis and interconnected by one or more links. In one embodiment, a dip-coated covered stent is formed by encapsulating cylindrical rings within a polymer material. In other embodiments, at least some of the rings and links are formed of a polymer material which provides longitudinal and flexural flexibility to the stent. These polymer rings and links are alternated with metallic rings and links in various configurations to attain sufficient column strength along with the requisite flexibility in holding open the target site within the body lumen. Alternatively, a laminated, linkless hybrid stent is formed by encapsulating cylindrical rings within a polymer tube.
Abstract:
Masking apparatus and methods of masking a medical article, such as stent, for selective application of a coating composition on the article are disclosed.
Abstract:
The present invention relates to methods of making a sterilized biosensor, where the biosensor comprises at least one binding reagent, which comprises at least one non-enzyme proteinaceous binding domain. Certain embodiments of the methods described herein comprise partially assembling the components of the biosensor, except for the binding reagent, and separately sterilizing this partial assemblage and the binding reagent. The sterilized binding reagent and the sterilized partial assemblage are then aseptically assembled to produce the sterilized biosensor. Other embodiments of the methods described herein comprise assembling substantially all of the components of the biosensor, including the binding reagent, and sterilizing the assembled biosensor to produce a sterilized biosensor.
Abstract:
A method of applying a ceramic coating to a substrate comprises laminating one or more layers of a green ceramic tape to a rigid substrate using a tackifying resin to adhere the tape to the substrate. Upon firing, the tackifying resin ensures near zero shrinkage of the tape in the XY plane without usage of elevated pressures or temperatures during lamination of green tape to the substrate. The thermal degradation completion temperature of the tackifying resin is lower than that of the resin binder used in the green tape.
Abstract:
Embodiments include an infusion-occlusion system having a delivery catheter, a guide catheter adapted to receive the delivery catheter, and a guidewire with an occlusion device adapted to be received within the guide catheter. The guide catheter of the catheter kit may be provided with an occlusion device at the distal end of the guide catheter. The delivery catheter may have an accessory lumen, coaxial or co-linear lumen, a supporting mandrel, or an occlusion device at its distal end. Moreover, according to some embodiments, occlusion devices may be a single material or a composite balloon having an inner liner and an outer layer of different materials, a high compliance low pressure balloon, or a filter device that restricts particles from passing through but does not restrict fluid, such as blood. An inflation device with a large volume and low volume syringe can be used to inflate the balloon.
Abstract:
An expandable medical device or component thereof including a tubular body formed of a wrapped sheet of porous polymeric material fused together, the tubular body having a fused seam at an angle relative to the longitudinal axis of the tubular body which changes along the length of the tubular body from a first angle to a second angle greater than the first angle. The sheet of porous polymeric material is wound and then fused together such that the winding angle is less in a first longitudinal section of the tubular body compared with the winding angle in a second longitudinal section of the tubular body, in order to provide the second section with greater resistance to expansion (i.e., lower compliance) than the first section.
Abstract:
The present invention relates to methods of making a sterilized biosensor, where the biosensor comprises at least one binding reagent, which comprises at least one non-enzyme proteinaceous binding domain. Certain embodiments of the methods described herein comprise partially assembling the components of the biosensor, except for the binding reagent, and separately sterilizing this partial assemblage and the binding reagent. The sterilized binding reagent and the sterilized partial assemblage are then aseptically assembled to produce the sterilized biosensor. Other embodiments of the methods described herein comprise assembling substantially all of the components of the biosensor, including the binding reagent, and sterilizing the assembled biosensor to produce a sterilized biosensor.
Abstract:
Thick film conductive copper pastes that are lead-free and cadmium-free. The inventive copper pastes possess desirable characteristics, including good solderability, good wire bondability, a low firing temperature, and a wide temperature processing window, and provide excellent adhesion to a variety of substrates, including alumina and glass coated stainless steel substrates, as well as low resistivity, and a microstructure after firing that is dense and substantially free of pores.
Abstract:
A delivery catheter that includes a flexible shaft having a proximal end and a distal end, the distal end having an outer diameter less than about 13 mm; a delivery lumen having a proximal end and a distal end, the delivery lumen within the flexible shaft, the delivery lumen having at least an outlet port or at least one side hole at the distal end of the delivery lumen, the delivery lumen having a cross-sectional area at least about 5 mm2; a pressure monitoring lumen having a proximal end and a distal end, the pressure monitoring lumen within the flexible shaft; a pressure port adjacent to and connected to the distal end of the pressure monitoring lumen; a balloon inflation lumen having a proximal end and a distal end, the balloon inflation lumen within the flexible shaft; a soft tip at the distal end of the flexible shaft; a balloon at the distal end of the flexible shaft, the balloon connected to the distal end of the balloon inflation lumen, the balloon includes at least one of the following materials, polyether block amide resin, polyetheramide, polyurethane, silicone, natural latex, or synthetic latex; wherein the balloon is adapted to inflate to a diameter range of about 4 to about 15 mm.