Abstract:
An investment casting system includes a core having at least one fine detail, a shell positioned relative to said core, and a strengthening coating applied at least to the at least one fine detail.
Abstract:
An internally cooled component of a gas turbine engine is provided. The component may include a cooling passage at least partially defined by a first wall and a second wall with a first pedestal extending from the first wall to the second wall. The first pedestal may have a chevron geometry. A second pedestal may extend from the first wall to the second wall and also have a chevron geometry. A gap may be defined by the first pedestal and the second pedestal with the gap oriented between the first pedestal and the second pedestal.
Abstract:
A die casting plunger tip includes a hollow outer portion and a hollow inner portion. The outer portion has a first closed end. The inner portion has a second partially closed end. The inner portion is disposed within the outer portion and the second partially closed end is adjacent the first closed end of the outer portion in an axial direction. A plurality of connectors connects the outer portion and the inner portion. A plenum is formed between the outer portion and the inner portion.
Abstract:
A aerodynamic particle separator for an Additive Manufacturing System (AMS) has an air supply device to entrain a mixed powder in an airstream flowing through a housing. Each particle in the mixed powder is imparted with a momentum dependent upon the particle weight and size. Utilizing this momentum characteristic, the heavier particles are capable of crossing streamlines of the airstream at a bend portion of the housing and the lighter particles generally stay within the streamlines. Utilizing this dynamic characteristic, the particles of specific weight ranges are collected through respective offtake holes in the housing and controllably fed to a spreader of the AMS.
Abstract:
In one example embodiment, a blade includes an attachment region, an airfoil extending from the attachment region, and a blade cooling arrangement. The blade cooling arrangement includes at least a first feed passage disposed through the attachment region, which is connected to a first cooling passage disposed in the airfoil. A passively actuated first coolant valve is disposed in or proximate the first feed passage. A plurality of such blades can be disposed in a turbine section of an engine.
Abstract:
In a featured embodiment, a gas turbine engine component comprises an airfoil having a leading edge, a trailing edge, and pressure and suction side walls extending from the leading edge to the trailing edge. The airfoil extends from a base to a tip. A shelf is formed in the tip, and extends from the pressure side wall, around the leading edge, to the suction side wall.
Abstract:
A turbine stator vane assembly for a gas turbine engine is disclosed and includes an airfoil rotatable about an axis transverse to an engine longitudinal axis. The airfoil includes outer walls defining an inner chamber between a pressure side and a suction side of the airfoil. At least one spindle supports rotation of the airfoil and includes a feed opening for communicating cooling air into the inner chamber. An inlet defines a passage between the feed opening and the inner chamber and includes a protrusion of the outer wall on at least one of the pressure side and suction side of the airfoil.
Abstract:
A gas turbine engine airfoil includes an airfoil structure including an exterior surface that is provided by an exterior wall that has a leading edge. A radially extending interior wall within the airfoil structure separates first and second radial cooling passages. The first cooling passage is arranged near the leading edge. A radially extending trench is in the leading edge. An impingement hole is provided in the interior wall and is configured to direct a cooling fluid from the second cooling passage to the first cooling passage and onto the exterior wall at the leading edge.
Abstract:
A conduction riser additively manufactured onto thin metal parts, the conduction riser extending in a build direction of the thin metal part and traversing the thin metal part as the conduction riser extends in the build direction. The conduction riser transferring heat from the upper layers of additively manufactured part during manufacturing, preventing thermal deflection of the part.
Abstract:
This disclosure relates to a gas turbine engine. The engine includes a component having a first wall and a second wall spaced-apart from the first wall. The component further includes a cooling passageway provided in part by a helical wall between the first wall and the second wall.