Abstract:
A distributed antenna system includes a headend device for generating a downlink transmission signal by combining a plurality of downlink RF signals in different frequency bands, received from a plurality of base stations, and converting the downlink transmission signal into a downlink optical signal, a main remote device for receiving the downlink optical signal from the headend device, converting the downlink optical signal into the downlink transmission signal, and amplifying the plurality of downlink RF signals included in the downlink transmission signal, and a sub-remote device for receiving the downlink transmission signal distributed from the main remote device, and amplifying the plurality of downlink RF signals included in the received downlink transmission signal.
Abstract:
A signal processing device according to an exemplary embodiment of the inventive concept can integrate a power amplifier, a duplexer, and a linearizer as a module to improve the convenience of management and to improve flexibility and extensibility so as to be transformable corresponding to a change in system development concept.
Abstract:
The inventive concept relates to a distributed antenna system (DAS), and more particularly, to an uplink signal transmission operation of each of node units constituting a DAS. A node unit of a DAS includes a signal input/output unit configured to receive m uplink signals from m lower node units and output the m uplink signals, and a multiplexer configured to generate a single uplink signal by selectively outputting any one of the m uplink signals at an interval of a predetermined output time. Accordingly, it is possible to provide a DAS capable of processing and outputting, as one signal, uplink signals received from a plurality of remote units, without any error.
Abstract:
There is provided a device for detecting LTE frame synchronization, including: a CP correlator calculating a correlation of a cyclic prefix (CP) included in each orthogonal frequency division multiplexing (OFDM) symbol of an LTE signal processed digital conversion; a frequency offset compensation unit compensating a frequency offset for a synchronization signal in the LTE signal by using a symbol frequency offset calculated based on the CP correlation; a synchronization signal correlation calculation unit performing a correlation calculation in a time domain with respect to the synchronization signal, of which the frequency offset is compensated, by considering a symbol start timing obtained based on the CP correlation; and a frame synchronization detection unit detecting the frame synchronization of the LTE signal based on a result of the correlation calculation for the synchronization signal.
Abstract:
A base station signal matching device is a base station signal matching device mounted in a distributed antenna system for amplifying a received base station signal and transmitting the amplified base station signal to a user terminal. The base station signal matching device includes a first unit for generating first and second branch base station signals by using a power division function based on the base station signal, and transmitting the second branch base station signal to a third unit, and a second unit for matching the first branch base station signal to be suitable for signal processing of the distributed antenna system.
Abstract:
A monitoring device for a distributed antenna system including at least two node units communicatively coupled to each other transmits, to at least one target node unit among the node units, a data dump command for a first target signal passing through a first signal path in the target node unit. The monitoring device receives, from the target node unit, response data corresponding to the data dump command. The monitoring device generates first quality information indicative of the quality of the first target signal by using the response data.
Abstract:
A distributed antenna system (DAS) according to an aspect of the inventive concept includes a first node unit for receiving first digital data in accordance with a digital interface standard from a base station, converting the first digital data into second digital data in accordance with a DAS frame standard, and a second node unit for receiving the second digital data from the first node unit, and restoring the first digital data based on the second digital data.
Abstract:
According to an example embodiment of the inventive concept, a master unit for time division duplex includes a passive signal distributor for outputting, to a second node, a downlink signal input through a first node, and outputting, to the first node, an uplink signal input through a third node, and a signal transceiver for transmitting, to a remote unit, the downlink signal input from the second node, and outputting, to the third node, an uplink amplification signal received from the remote unit.
Abstract:
An abdominal muscle exercise machine that generally contains a diagonal member with an adjustable seat and a backrest and a pivot member that pivots with respect to the diagonal member. A chest push can be mechanically coupled to the pivot member through an adjustable force multiplier. An optional counterweight can be placed near one end of the pivot member to lighten the force, or an optional load weight can be placed near the other end of the pivot member to increase the force. The pivot member can be constructed to telescope or otherwise adjust for different body sizes. The machine provides a smooth exercise where the top and bottom portions of the body move together in a linked fashion. The machine of the present invention works without heavy external weights.
Abstract:
Provided are a clock synchronization method performed between communication nodes included in a communication network, the clock synchronization method comprises receiving a synchronization source signal through any one of remaining communication nodes except for an uppermost communication node included in the communication network, generating a reference clock for clock synchronization from the received synchronization source signal and transmitting the generated reference clock through a first path including at least a portion reverse to a second path through which a downlink signal is transmitted in the communication network.