摘要:
Disclosed are various building facade surface configurations and related methods. An exemplary facade includes grooved cavities that are configured in a manner that reflects summer (cooling season) insolation and absorbs winter (heating season) insolation. The effective absorptivities of the exemplary facade for various cavity reflectance characteristics, i.e., a wide range of diffuse and specular reflectance characteristics, are evaluated using a Monte Carlo model. The calculations in an illustrated embodiment are performed for the latitude of 41° N where both heating and cooling loads are significant. Embodiments of facades and other structures are similarly within the scope of the disclosure for locations of different latitudes and longitudes.
摘要:
A heating and cooling system for a building having a passive source of heat energy, a heat sink reservoir to store heat energy in, and a first heat exchange system operating a temperature of 15 degrees Celsius or less and being operatively connected to said reservoir. There is a second heat exchange system operating at a temperature of above 15 degrees Celsius which is also operatively connected to the heat sink reservoir and a thermal mass wall which is connected to the heat exchanger systems. In one aspect, the invention provides a dynamic wall having a first insulating layer on an interior surface of the wall, a thermal mass adjacent to the first insulating layer, a second insulating layer on an outside surface of the thermal mass and a heat exchanger operatively connected to said thermal mass to add or subtract heat from said thermal mass wall.
摘要:
A system for heating and supplying electricity to residential, commercial, and industrial buildings using renewable energy that is stored, at little or no incremental cost, in a large mass of warm or hot water. The large thermal mass is sized based on the building. Thermal energy from a number of sources, including, but not limited to renewable energy panels, waste heat, and flue gas, are used to provide heat to the large thermal mass.
摘要:
A solar energy collector and thermal storage device for placement in a building's exterior architectural opening is provided, having an insulating cavity including a first lite on the device exterior side and a second lite spaced inwardly therefrom, defining a depth of the insulating cavity, and being substantially filled with an insulating gas. A provided thermal storage cavity includes the second lite and a third lite spaced inwardly therefrom, defining a depth of the thermal storage cavity which is at least the same size as the insulating cavity depth, and is substantially filled with a thermal storage medium, which is a hydrogel adhering to the second lite and the third lite and having cohesion characteristics such that it is self supporting and maintains its shape within the thermal storage cavity. A low-emissivity coating disposed on the insulating cavity side of the second lite inhibits exterior thermal radiation transfer.
摘要:
Disclosed are various building facade surface configurations and related methods. An exemplary facade includes grooved cavities that are configured in a manner that reflects summer (cooling season) insolation and absorbs winter (heating season) insolation. The effective absorptivities of the exemplary facade for various cavity reflectance characteristics, i.e., a wide range of diffuse and specular reflectance characteristics, are evaluated using a Monte Carlo model. The calculations in an illustrated embodiment are performed for the latitude of 41° N where both heating and cooling loads are significant. Embodiments of facades and other structures are similarly within the scope of the disclosure for locations of different latitudes and longitudes.
摘要:
Reactors for conducting thermochemical processes with solar heat input, and associated systems and methods. A system in accordance with a particular embodiment include a reactor having a reaction zone, a reactant source coupled in fluid in communication with the reactant zone, and a solar concentrator having at least one concentrator surface positionable to direct solar energy to a focal area. The system can further include an actuator coupled to the solar concentrator to move the solar concentrator relative to the sun, and a controller operatively coupled to the actuator. The controller can be programmed with instructions that, when executed, direct the actuator to position the solar concentrator to focus the solar energy on the reaction zone when the solar energy is above a threshold level, and direct the actuator to position the solar concentrator to point to a location in the sky having relatively little radiant energy to cool an object positioned at the focal area when the solar energy is below the threshold level.
摘要:
A solar heating block, designed for use in assembling solar heating panels in the walls of buildings, has a first compartment and a second compartment within its interior volume. The first compartment contains a translucent insulating material, such as an aerogel. The second compartment, which is inward of the solar heating block from the first compartment, contains a heat-absorbing material. The translucent insulating material allows light to be transmitted through the solar heating block, but reduces heat loss to the exterior of the building from the heat-absorbing material.
摘要:
The invention relates to a method for trimming a building frontage. The method includes: applying an insulation onto said wall, from the wall towards the outside; applying a solar receptor after the insulation; forming a channel between the insulation and a rigid outer layer; placing a partially transparent and/or cut-out flexible strip therein; closing the channel with the outer layer having at least 90% of the surface thereof made of at least one transparent or translucent protection feature. The invention also relates to a kit for trimming a building frontage capable of being implemented by the method.
摘要:
One embodiment of a southward facing trapezoidal shaped passive solar heat gaining building with basement walls used for heating the building on cold days, and cooling the building on hot days. The specially colored blinds FIG. 4, and shade 24 are features to aid the building in using nearly no energy for lighting, heating, and cooling. Upside down U shaped basement wall 40 and 42 are a unique feature that prevent leaks.This building, when elongated outward in the form of a large store, has parking along its perimeter allowing for time saved in people walking to and from cars, and saves conveyance waste in the form of a large manufacturing plant being able to have trucks deliver parts very close to the place where the parts are needed. Incidentally, because the building may be long and narrow and not square, it is safer if it catches fire because people can exit drastically quicker, and fire trucks can park near the fire and reach it quicker to put it out quicker. Other embodiments are shown inside, such as a multi-story building.
摘要:
Corrugated transparent or semi-transparent structures, typically from Polycarbonate or Acrylic, are typically used for creating for example various transparent or semi-transparent walls or roofs for example in large buildings or for creating greenhouses for plants. However, especially for example during the summer, this can cause overheating of the greenhouse effect, so that too much heat is caught inside, which can have undesirable effects. The present invention shows a very cheap solution for automatically regulating the penetration of the Sun's rays through such structures during the day, so that for example at noon the Sun's penetration is automatically lowered. This is preferably achieved by using a sandwich in which two external transparent plates are connected by non-transparent or at least less transparent inner walls (also called bridges) and using appropriate orientations so that when the sun rises or sets the Sun's rays can easily enter more directly and when the sun rises at noon the non-transparent or less transparent inner bridges block direct light from the Sun.