Abstract:
An electro-optic waveguide device, comprising (a) a first polymer buffer clad having a refractive index of about 1.445 to about 1.505 and a thickness of about 2.2 nullm to about 3.2 nullm; (b) a first polymer clad having a refractive index of about 1.53 to about 1.61 and a thickness of about 1.0 nullm to about 3.0 nullm; (c) an electro-optic polymer core having a refractive index of about 1.54 to about 1.62 and a thickness of about 1.0 nullm to about 3.0 nullm; and (d) a second polymer buffer clad having a refractive index of about 1.445 to about 1.505 and a thickness of about 2.2 nullm to about 3.2 nullm.
Abstract:
A manufacturing method for an optical waveguide device. The manufacturing method includes the steps of forming an optical waveguide in a substrate having an electro-optic effect, forming an SiO2 film on the substrate, forming Si films on the SiO2 film, the lower surface of the substrate, and at least a part of the side surface of the substrate to thereby make a conduction between the Si film formed on the SiO2 film and the Si film formed on the lower surface of the substrate. The manufacturing method further includes the steps of applying a photoresist to the Si film formed on the SiO2 film, patterning the photoresist so that a portion of the photoresist corresponding to the optical waveguide is left, forming a groove on the substrate along the optical waveguide by reactive ion etching, and removing the photoresist and the Si films.
Abstract:
A first film (8) is formed between a substrate (1) and a signal electrode (3); ground electrodes (5) and (6) which constitute an optical waveguide device (10), and a second film (9) is formed between the substrate (1) and a signal electrode (4); ground electrodes (6) and (7). An optical phase modulator (10A) is composed of the substrate (1), an optical waveguide (2), the signal electrode (3), the ground electrodes (5) and (6), and the first film (8). An optical intensity modulator (10B) is composed of the substrate (1), the optical waveguide (2), the signal electrode (4), the ground electrodes (6) and (7), and the second film (9). The optical waveguide device (10) is composed of the optical phase modulator (10A) and the optical intensity modulator (10B), which are integrated monolithically.
Abstract:
There is provided a high performance optical waveguide type optical modulator with excellent long term reliability, in which contamination of the buffer layer in a forming process of a signal field adjustment region on the buffer layer by a lift-off method or an etching method, is prevented and DC drift thus suppressed. The optical waveguide type optical modulator 10 comprises a substrate 11 having an electro-optic effect, optical waveguides 12 formed on the surface of this substrate 11, a traveling-wave type signal electrode 13a and ground electrodes 13b which are provided on the substrate 11 and control a lightwave, and a buffer layer 14 provided between the electrodes 13 and the optical waveguides 12, and furthermore, a dielectric layer 15 is provided on the entire surface of the buffer layer 14 on the side of the electrodes 13, and a signal field adjustment region 16 which has a wider width than that of the traveling-wave type signal electrode 13a and is made of a material with a higher refractive index than that of the dielectric layer 15 is formed between the dielectric layer 15 and the traveling-wave type signal electrode 13a.
Abstract:
An optical waveguide element includes a three-dimensional optical waveguide of a bulky non-linear optical crystal, a substrate, and a joining layer made of an amorphous material. The substrate is joined to the optical waveguide via the joining layer.
Abstract:
A band discontinuity reduction layer having a band gap energy larger than that of that of an MQW (multiple quantum well) absorption layer and smaller than that of a p-InP clad layer is provided between the MQW absorption layer and the p-InP clad layer. In addition, a band discontinuity reduction layer having a band gap energy larger than that of the MQW absorption layer and smaller than that of an n-InP clad layer is provided between the MQW absorption layer and the n-InP clad layer. Consequently, as a pile-up of carriers is suppressed, a semiconductor light modulator with an enhanced response speed can be obtained.
Abstract:
An electro-optic element comprising a ferroelectric substrate comprising a single crystal having an electro-optic effect, in which an optical waveguide is formed by thermal diffusion of titanium in a main face, and in which an axis in which said electro-optic effect is induced is parallel to said main face; a heat treated buffer layer provided on said ferroelectric substrate on a side in which said optical waveguides are formed; electrodes provided on a part of the buffer layer; and a protective film for preventing contamination of the buffer layer provided on at least the region of the buffer layer on which the electrodes are not formed.
Abstract:
An optical waveguide is formed on a substrate made of a material with an electro-optic effect. Then, an intermediate layer is fabricated, on the main surface of the substrate, by a dielectric material selected from the group consisting of AOx, B2Oy, COz (A: divalent element, B: trivalent element, C: quadrivalent element, 0
Abstract:
In a method of forming an array substrate for in-plane switching liquid crystal display device a first metal layer is formed on a substrate and then patterned using a first mask so as to form a gate line having a gate electrode and a common line having a plurality of common electrodes. A gate insulation layer is formed on the substrate to cover the patterned first metal layer. A semiconductor layer is formed on the gate insulation layer using a second mask, wherein the semiconductor layer includes an active layer of pure amorphous silicon and an ohmic contact layer of impurity-doped amorphous silicon. A second metal layer is formed on the gate insulation layer to cover the semiconductor layer and then patterned using a third mask to form a data line having a source electrode, a pixel connecting line having a plurality of pixel electrodes, and a drain electrode that is spaced apart from the source electrode. A channel is formed by etching a portion of the ohmic contact layer between the source and drain electrodes. An alignment layer is formed over the substrate to cover the patterned second metal layer. The substrate having the alignment layer and the source and drain electrode is then thermal-treated in a furnace to cure the alignment layer and to anneal a thin film transistor.
Abstract:
An optical component, such as, for example, a Mach-Zehnder modulator, in which the ground electrodes are formed directly on a surface of a substrate, that is, without the intermediary of or presence of conventional buffer dielectric layers. Forming the optical component without a dielectric layer between the ground electrodes and the substrate allows for a reduction in the drive voltage in the operation of the modulator.