摘要:
Elastomeric films which are both soft and thermally, UV and oxidatively stable are provided. The films are composed of coupled, selectively hydrogenated block copolymers having a relatively high molecular weight and high vinyl content. In addition to the block copolymer other components may be present in formulated films such as other block copolymers, hydrocarbon resins, polyolefins, metallocene polyolefins, homopolystyrene or mineral oils. The softness of the films is determined by the stress at 100% tensile elongation where the films with suitable softness have a 100% stress of about 100 psi or less. While soft, the films also are strong with tensile strengths of 1000 psi or more and suitable hysteresis properties. The elastomeric films are useful as integral components of personal hygiene articles such as gloves, diapers, incontinence products, disposable swimwear and disposable undergarments.
摘要:
Various novel block cationomers comprising polyisobutylene (PIB) and poly(2-dimethylamino)ethyl methacrylate) (PDMAEMA) segments have been synthesized and characterized. The specific targets were various molecular weight diblocks (PDMAEMA+) and triblocks (PDMAEMA+-b-PIB-b-PDMAEMA+) with the PIB blocks in the DPn=50-200 (Mn=3,000-9,000 g/mol) range connected to blocks of PDMAEMA+ cations in the DPn=5-20 range. The overall synthetic strategy for the preparation of these block cationomers comprised four steps: 1) Synthesis by living cationic polymerization of mono- and di-allyltelechelic polyisobutylenes, 2) End group transformation to obtain PIBs fitted with termini capable of mediating the atom transfer radical polymerization (ATRP) of DMAEMA, 3) ATRP of DMAEMA and 4) Quaternization of PDMAEMA to PDMAEMA+I− by CH3I. Kinetic and model experiments provided guidance to develop convenient synthesis methods. The microarchitecture of PIB-PDMAEMA di- and triblock and the corresponding block cationomers were confirmed by 1H NMR and FTIR spectroscopy and solubility studies.
摘要:
Elastomeric films which are both soft and thermally, UV and oxidatively stable are provided. The films are composed of coupled, selectively hydrogenated block copolymers having a relatively high molecular weight and high vinyl content. In addition to the block copolymer other components may be present in formulated films such as other block copolymers, hydrocarbon resins, polyolefins, metallocene polyolefins, homopolystyrene or mineral oils. The softness of the films is determined by the stress at 100% tensile elongation where the films with suitable softness have a 100% stress of about 100 psi or less. While soft, the films also are strong with tensile strengths of 1000 psi or more and suitable hysteresis properties. The elastomeric films are useful as integral components of personal hygiene articles such as gloves, diapers, incontinence products, disposable swimwear and disposable undergarments.
摘要:
In one embodiment, the invention is a composition comprising: a) one or more film forming resins having at least one functional group capable of polymerization; b) one or more adhesion promoters comprising compounds containing one or more unsaturated groups capable of free radical polymerization and one or more trialkoxy silane groups; c) one or more fillers capable of imparting abrasion resistance to the composition when cured; d) one or more compounds which is reactive with the film forming resin which also contains an acidic moiety; and e) one or more compounds comprising a siloxane backbone and one or more active hydrogen groups capable of reacting with the functional groups on a glass bonding adhesive, one or more second adhesion promoters comprising one or more silicon, titanium, zirconium, aluminum, or metal containing compounds, organic materials having reactive groups which are reactive with reactive groups on the surface of substrates or adhesives to which the composition of the invention will be bonded or mixtures thereof.
摘要:
The present invention concerns polymers obtained by anionic initiation and bearing functions that can be activated by cationic initiations that are not reactive in the presence of anionic polymerization initiators. The presence of such cationic initiation functions allow an efficient cross-linking of the polymer after moulding, particularly in the form of a thin film. It is thus possible to obtain polymers with well-defined properties in terms of molecular weight and cross-linking density. The polymers of the present invention are capable of dissolving ionic compounds inducing a conductivity for the preparation of solid electrolytes.
摘要:
The present invention relates to a thermoplastic resin composition which has an improved impact resistance while maintaining mechanical properties such as strength and rigidity. In the present invention, a thermoplastic resin (A) is mixed with a polytetrafluoroethylene-containing mixed powder (B) consisting of a polytetrafluoroethylene (b1) having a particle diameter of 10 μm or less and an organic polymer (b2). In this case, the polytetrafluoroethylene-containing mixed powder (B) is mixed so that the amount of a polytetrafluoroethylene component is from 0.0001 to 20 parts by weight based on 100 parts by weight of the thermoplastic resin (A), and a polymer having an epoxy group was used as the organic polymer (b2). The thermoplastic resin composition of the present invention can be widely used in the fields of automotive parts, electric and electronic parts, and precision instrument parts.
摘要:
A method for repairing a basecoat/clearcoat finish or coating comprised of a fluorinated organosilane topcoat. A fluorourethane star polyester additive is added to the fluorinated organosilane topcoat composition to improve recoat adhesion with the repair basecoat.
摘要:
An objective of the invention is to provide a rubber composition which has satisfactory processability and dimension stability, and the like, gives a vulcanized rubber exhibiting excellent wearing resistance and tensile strength, and the like, and thus is useful in a belt, a hose and a tire and the like, as well as a crosslinked rubber particle for obtaining such rubber composition. A rubber composition of the invention comprises null1null a crosslinked rubber particle comprising as repeating units (a) 30 to 94.89% by weight of a conjugated diene unit, (b) 5 to 69.89% by weight of an aromatic vinyl unit, (c) 0.01 to 10% by weight of a monomer unit having at least two polymerizable unsaturated group, (d)one polymerizable unsaturated group and an amino group, a hydroxyl group and an epoxy group and (e) 0.1 to 30% by weight of a monomer unit having one polymerizable unsaturated group and a carboxylic group and having a particle size of 10 to 500 nm and a toluene-insolubles of 80 by weight or more and null2null a non-crosslinked rubber component whose toluene-insolubles is less than 20% by weight.
摘要:
The present invention relates to a thermoplastic resin composition which has an improved impact resistance while maintaining mechanical properties such as strength and rigidity. In the present invention, a thermoplastic resin (A) is mixed with a polytetrafluoroethylene-containing mixed powder (B) consisting of a polytetrafluoroethylene (b1) having a particle diameter of 10 nullm or less and an organic polymer (b2). In this case, the polytetrafluoroethylene-containing mixed powder (B) is mixed so that the amount of a polytetrafluoroethylene component is from 0.0001 to 20 parts by weight based on 100 parts by weight of the thermoplastic resin (A), and a polymer having an epoxy group was used as the organic polymer (b2). The thermoplastic resin composition of the present invention can be widely used in the fields of automotive parts, electric and electronic parts, and precision instrument parts.
摘要:
The present invention concerns polymers obtained by anionic initiation and bearing functions that can be activated by cationic initiations that are not reactive in the presence of anionic polymerization initiators. The presence of such cationic initiation functions allow an efficient cross-linking of the polymer after moulding, particularly in the form of a thin film. It is thus possible to obtain polymers with well-defined properties in terms of molecular weight and cross-linking density. The polymers of the present invention are capable of dissolving ionic compounds inducing a conductivity for the preparation of solid electrolytes.