Abstract:
Disclosed are a CMOS image sensor and a manufacturing method thereof. The method includes the steps of: forming an isolation layer on a semiconductor substrate, defining an active region that includes a photo diode region and a transistor region; forming a gate in the transistor region, the gate including a gate electrode and a gate insulating layer; forming a first low-concentration diffusion region in the photo diode region; forming a second low-concentration diffusion region in the transistor region; forming a buffer layer over the substrate, the buffer layer covering the photo diode region; forming first and second insulating layers over the entire surface of the substrate, the first and second insulating layer having a different etching selectivity from each other; forming an insulating sidewall on sides of the gate electrode by selective removal of the second insulating layer; removing the first insulating layer from the transistor region; forming a high-concentration diffusion region in the exposed transistor region, partially overlapping the second low-concentration diffusion region; and forming a metal silicide layer on the high-concentration diffusion region.
Abstract:
A CMOS image sensor and a method for manufacturing the same are provided, in which a nitride layer for passivation is used as a microlens to reduce topology. The CMOS image sensor includes an upper metal layer partially deposited on a dielectric layer; a first nitride layer deposited on the upper metal layer; an undoped silicon glass layer deposited on the first nitride layer and polished by chemical-mechanical polishing; color filter array elements deposited and exposed on the undoped silicon glass layer and polished by the chemical-mechanical polishing; and a second nitride layer deposited on the first nitride layer and the color filter array elements and transfer-etched after forming a sacrificial microlens on the second nitride layer.
Abstract:
An image sensor may include a first substrate having circuitry including wires and a silicon layer formed on and/or over the first substrate to selectively contact the wires. The image sensor may include photodiodes bonded to the first substrate while contacting the silicon layer and electrically connected to the wires. Each unit pixel may be implemented having complicated circuitry without a reduction in photosensitivity. Additional on-chip circuitry may also be implanted in the design.
Abstract:
A method for manufacturing structures of a CMOS image sensor. The method comprises the steps of depositing a gate insulating layer and a conductive layer on a semiconductor substrate; depositing an ion implantation barrier layer on the conductive layer; patterning the deposited gate insulating layer, conductive layer and ion implantation barrier layer to form a patterned, composite gate insulating layer, gate electrode and ion implantation barrier structure; forming a second photosensitive layer pattern to define a photodiode region; and implanting low-concentration dopant ions into the substrate using the second photosensitive layer pattern as an ion implantation mask to form a low-concentration dopant region within the photodiode region.
Abstract:
A CMOS image sensor and method for fabricating the same, wherein the CMOS image sensor has minimized dark current at the boundary area between a photodiode and an isolation layer. The present invention includes a first-conductivity-type doping area formed in the device isolation area of the substrate, the first-conductivity-type doping area surrounding the isolation area and a dielectric layer formed between the isolation layer and the first-conductivity-type doping area, wherein the first-conductivity-type doping area and the dielectric layer are located between the isolation layer and a second-conductivity-type diffusion area.
Abstract:
A CMOS image sensor and a manufacturing method are disclosed. The gates of the transistors are formed in the active region of the unit pixel, and a diffusion region for the photo diode is defined by an ion implantation of impurities to the semiconductor substrate. The patterns of the photoresist that are the masking layer against ion implantation are formed on the semiconductor substrate in such a manner that they have the boundary portion of the isolation layer so as not to make the boundary of the defined photo diode contact with the boundary of the isolation layer. Damages by an ion implantation of impurities at the boundary portion between the diffusion region for the photo diode and the isolation layer are prevented, which reduces dark current of the COMS image sensor.
Abstract:
CMOS image sensor and method for fabricating the same, the CMOS image sensor including a second conductive type semiconductor substrate having an active region and a device isolation region defined therein, wherein the active region has a photodiode region and a transistor region defined therein, a device isolating film in the semiconductor substrate of the device isolation region, a first conductive type impurity region in the semiconductor substrate of the photodiode region, the first conductive type impurity region being spaced a distance from the device isolation film, and a second conductive type first impurity region in the semiconductor substrate between the first conductive type impurity region and the device isolation film, thereby reducing generation of a darkcurrent at an interface between the photodiode region and a field region.
Abstract:
A CMOS image sensor includes a first conductive type semiconductor substrate having an active region and a device isolation region, a device isolation film formed in the device isolation region of the semiconductor substrate, a second conductive type diffusion region formed in the active region of the semiconductor substrate, and an ion implantation prevention layer formed in the vicinity of the device isolation film, including a boundary portion between the device isolation film and the second conductive type diffusion region.
Abstract:
A method of manufacturing a gate in a flash memory device. The method includes forming a stacking structure including a tunnel oxide layer, a floating gate, a dielectric layer, and a control gate on a semiconductor substrate. The further includes removing a remaining portion of the tunnel oxide layer exposed by the control gate by wet etching to a degree that the semiconductor substrate is exposed, and forming an oxide layer covering the exposed portion of the semiconductor substrate and both sidewalls of the floating gate and the control gate.
Abstract:
A flash memory device having a reduced source resistance and a fabrication method thereof are disclosed. An example flash memory includes a cell region including a gate, a source line, a drain contact, and a cell trench area for device isolation on a silicon substrate. The example flash memory also includes a peripheral region positioned around the cell region and including a subsidiary circuit and a peripheral trench area for device isolation on the silicon substrate, wherein the cell trench area of the cell region is shallower than the peripheral trench area of the peripheral region.