Abstract:
A gate driving circuit includes cascaded stages, each including a pull-up part, a carry part, a pull-up driving part, a holding part and an inverter. The pull-up part pulls up a gate voltage to an input clock. The carry part pulls up a carry voltage to the input clock. The pull-up driving part is connected to a control terminal (Q-node) common to the carry part and the pull-up part, and receives a previous carry voltage from a previous stage to turn on the pull-up part and the carry part. The holding part holds the gate voltage at an off-voltage, and the inverter controls at least one of turning on the holding part and turning off the holding part based on an inverter clock. A high level of the inverter clock in a given horizontal period (1H) temporally precedes a high level of the input clock by a predetermined time interval.
Abstract:
A pull-up driving part maintains a signal of a first node at a high level by receiving a turn-on voltage in response to one of a previous stage or a vertical start signal. A pull-up part outputs a clock signal through an output terminal in response to the signal of the first node. A first holding part maintains a signal of a second node at a high level or a low level when the signal of the first node is respectively low or high. A second holding part maintains the signal of the first node and a signal of the output terminal at a ground voltage in response to the signal of the second node or a delayed and inverted clock signal.
Abstract:
A thin film transistor substrate, wherein the moving area of electrons between source and drain electrodes of a thin film transistor (TFT) is minimized, the moving distance of electrons is increased, and the sizes of capacitors defined by a gate electrode together with the respective source and drain electrodes are identical to each other so that an off current generated when the TFT is off can be minimized; a method of manufacturing the thin film transistor substrate; and a mask for manufacturing the thin film transistor substrate. Accordingly, it is possible to minimize an off current induced due to a phenomenon of electron trapping by light.
Abstract:
The present invention relates to a fumagillol derivative, pharmaceutically acceptable salts thereof and a method for preparing the same. The compounds of the present invention can be prepared through acylation, hydrolysis and alkylation. The compound of the present invention can be prepared in the form of a pharmaceutically acceptable salt or inclusion compound. The present invention provides fumagillol derivatives having the following characteristics: increased inhibiting effect on angiogenesis, low toxicity, excellent solubility and chemical stability as compared to conventional angiogenesis inhibitors. The compounds of the present invention can be used as an anti-cancer medicine, inhibitor of cancer metastasis, or the therapeutic agent for treating rheumatic arthritis, psoriasis, diabetic retinitis or obesity.
Abstract:
A gate driving circuit and a display device having the same, a pull-up unit pulls up a current gate signal by using a first clock signal during a first period of one frame. A pull-up driver coupled to the pull-up unit receives a carry signal from one of the previous stages to turn on the pull-up unit. A pull-up unit receives a gate signal from one of the next stages, discharges the current gate signal to an off voltage level, and turns off the pull-up unit. A holder holds the current gate signal at the voltage level. An inverter turns on/off the holder in response to a first clock signal. A ripple preventer has a source and a gate coupled in common to an output terminal of the pull-up unit and a drain coupled to an input terminal of the inverter, and includes a ripple preventing diode for preventing a ripple from being applied to the inverter.
Abstract:
An array substrate of an LCD having: a gate line formed along a first direction; a data line formed along a second direction crossing the first direction; first and second pixel electrodes spaced apart from each other; a thin-film transistor includes a gate electrode connected to the gate line; a source electrode connected to the data line and partially overlapping the second pixel electrode; and a drain electrode connected to the first pixel electrode spaced apart from the second pixel electrode along the second direction. The source electrode or the gate electrode overlaps the second pixel electrode but the drain electrode does not overlap the second pixel electrode. Electrical coupling between the first and second pixel electrodes are avoided with such configuration.
Abstract:
In a display device, gate lines, which extend in a first direction, cross and are insulated from data lines, which extend in a second direction, to define pixel areas on a first base substrate. Pixels are arranged in the pixel areas, respectively, and a color filter layer including a plurality of color filter is arranged on a second base substrate that is coupled with the first base substrate. The color filters include a first sub color filter, a second sub color filter, and a third sub color filter, repeatedly arranged in the first direction and the second direction to represent different colors, respectively.
Abstract:
In a gate driving circuit and a display apparatus having the same, a ripple preventing part is connected to a pull-up part and a control terminal (Q-node) to reset the Q-node. The ripple preventing part includes a first ripple preventing device that resets the Q-node during a high period of the first clock within a (n−1)H period, and a second ripple preventing device that resets the Q-node during a high period of a second clock within the (n−1)H period. A back-flow preventing device is connected between a previous carry node and the second ripple preventing device to prevent an electric charge of the Q-node from flowing back to the previous carry node.
Abstract:
The present invention relates to a module and method for detecting a defect of a thin film transistor (TFT) substrate, which can detect disconnection of a gate line of the TFT substrate having gate drivers provided with a dual structure in which the gate drivers are provided at both sides of the gate lines. There is provided a module and method for detecting a defect of a TFT substrate, wherein gate lines are separated into two portions by cutting a central region of the gate lines, gate power is supplied to the gate lines of which central portions are cut through gate drivers provided at both sides of the gate lines, and a signal of a negative voltage level is supplied to data lines, so that disconnection of the gate lines can be detected.
Abstract:
Disclosed is a liquid crystal display device including a first substrate, a second substrate, and a liquid crystal layer interposed there between. The first substrate is provided with gate lines and data lines thereon. The gate lines and data lines cross with each other and are insulated from each other. Pixel electrodes are stacked on the gate lines and data lines. Each pixel electrode includes first and second sub-pixel electrodes spaced apart from each other and a connection electrode, which connects the first sub-pixel electrode to the second sub-pixel electrode. The second substrate is provided with a common electrode thereon. The common electrode includes a first domain divider formed on the center of the first sub-pixel electrode and a second domain divider formed on the center of the second sub-pixel electrode.