Abstract:
Disclosed are a carbon nano-tube (CNT) thin film treated with chemical having an electron withdrawing functional group and a manufacturing method thereof. Specifically, the CNT thin film comprises a CNT composition to be applied on a plastic substrate. The CNT composition comprises a CNT; and chemical connected to the CNT and having an electron withdrawing functional group. In addition, the method for manufacturing a CNT thin film comprises steps of preparing a CNT; treating the CNT with chemical having an electron withdrawing functional group; mixing the CNT treated with the chemical with a dispersing agent or dispersing solvent to prepare a CNT dispersed solution; and forming a CNT thin film with the CNT dispersed solution. According to the CNT thin film and the manufacturing method thereof, a resistance of an electrode is decreased to improve the electric conductivity of the electrode.
Abstract:
Disclosed are a heat transfer medium and a heat transfer method that uses the heat transfer medium. The heat transfer medium comprises a light-transparent substrate coated with a plurality of nano particles. The nano particles absorb light incident thereon to thereby produce heat, which is transferred to a target object to be heated. Nano particles can be applied onto a target object. After heating, the particles are removed by etching. Nano particles can be selectively applied to the light-transparent substrate or directly to a target object to be heat so as to localize heat-production and thus heat selective portions of the target object.
Abstract:
Disclosed herein is a reduced graphene oxide doped with a dopant, and a thin layer, a transparent electrode, a display device and a solar cell including the reduced graphene oxide. The reduced graphene oxide doped with a dopant includes an organic dopant and/or an inorganic dopant.
Abstract:
Disclosed is a transparent carbon nanotube (CNT) electrode using a conductive dispersant. The transparent CNT electrode comprises a transparent substrate and a CNT thin film formed on a surface the transparent substrate wherein the CNT thin film is formed of a CNT composition comprising CNTs and a doped dispersant. Further disclosed is a method for producing the transparent CNT electrode.The transparent CNT electrode exhibits excellent conductive properties, can be produced in an economical and simple manner by a room temperature wet process, and can be applied to flexible displays. The transparent CNT electrode can be used to fabricate a variety of devices, including image sensors, solar cells, liquid crystal displays, organic electroluminescence (EL) displays and touch screen panels, that are required to have both light transmission properties and conductive properties.
Abstract:
A transistor includes at least three terminals comprising a gate electrode, a source electrode and a drain electrode, an insulating layer disposed on a substrate, and a semiconductor layer disposed on the substrate, wherein a current which flows between the source electrode and the drain electrode is controlled by application of a voltage to the gate electrode, where the semiconductor layer includes a graphene layer and at least one of a metal atomic layer and a metal ion layer, and where the metal atomic layer or the metal ion layer is interposed between the graphene layer and the insulating layer.
Abstract:
Provided is a method of modifying carbon nanotubes, the method including: preparing a mixed solution in which a radical initiator and a carbon nanotube are dispersed; applying energy to the mixed solution to decompose the radical initiator into a radical; and reacting the decomposed radical with a surface of the carbon nanotube, wherein the radical which has reacted with the carbon nanotube is detached from the carbon nanotube after the reaction with the carbon nanotube. In the method of modifying carbon nanotube, a radical is reacted with a carbon nanotube and then separated from the carbon nanotube to thus modify the surface of the carbon nanotube without chemical bonding. Accordingly, the conductivity of the carbon nanotube can be increased.
Abstract:
A method of fabricating a liquid film is provided. The method comprises the steps of applying hydrophilic liquid onto a substrate with an electrode formed thereunder, covering the hydrophilic liquid with a protection film comprising hydrophobic liquid, dispersing surfactant for reducing the surface tension between the hydrophilic liquid and the protection film, and applying voltage to the hydrophilic liquid and the electrode to wet the substrate with the hydrophilic liquid. With the surfactant and the electro-wetting principle, a contact angle between the hydrophilic liquid and the substrate is controlled. The liquid film having a uniform thickness in nano size is thus formed on the substrate. The protection film prevents the evaporation of the liquid film in the air to thereby secure the stability of the liquid film.
Abstract:
Provided is a carbon nanotube dispersion including: carbon nanotubes, a solvent, and a dispersant, in which a mutifunctional ethylene oxide-propylene oxide block copolymer acts as the dispersant. The carbon nanotube dispersion provides excellent dispersion stability in aqueous and organic systems. Therefore, the carbon nanotube dispersion is suitable for a transparent electrode.
Abstract:
Provided are a process for economically preparing a graphene shell having a desired configuration which is applicable in various fields wherein in the process the thickness of the graphene she can be controlled, and a graphene shell prepared by the process.
Abstract:
A transparent electrode on at least one surface of a transparent substrate may include graphene doped with a p-dopant. The transparent electrode may be efficiently applied to a variety of display devices or solar cells.