Abstract:
Provided is a PLC simulator including a component configuration unit receiving a command from a user to controllably perform a simulation, and a simulation unit receiving a command from the component configuration unit to perform a simulation of a connected external PLC, whereby a user is provided with a convenient environment capable of simulating a variety of systems through reconfigurable component, and a user is capable of reducing a TCO (Total Cost of Ownership) by being provided with a testing environment maximally similar to that of an actual apparatus through application of external input conditions.
Abstract:
A micro thin-film structure, a micro electro-mechanical system (MEMS) switch, and methods of fabricating them. The micro thin-film structure includes at least two thin-films having different properties and laminated in sequence to form an upper layer and a lower layer, wherein an interface between the upper and lower layers is formed to be oriented to at least two directions. The micro thin film structure, and method of forming, may be applied to a movable electrode of an MEMS switch. The thin-film structure may be formed by forming through-holes in the lower layer, and depositing the upper layer in the form of being engaged in the through-holes. Alternatively, the thin-film structure may be made by forming prominence and depression parts on the top side of the lower layer and then depositing the upper layer on the top side of the lower layer having the prominence and depression parts.
Abstract:
A piezoelectric microspeaker and a method of fabricating the same are provided. The piezoelectric microspeaker includes a substrate having a through hole therein; a diaphragm disposed on the substrate and covering the through hole; and a plurality of piezoelectric actuators including a piezoelectric member, a first electrode, and a second electrode, wherein the first and second electrodes are configured to induce an electric field in the piezoelectric member. The piezoelectric actuators include a central actuator, which is disposed on a central portion of the diaphragm and a plurality of edge actuators, which are disposed a predetermined distance apart from the central actuator and are formed on a plurality of edge portions of the diaphragm.
Abstract:
A liquid crystal display device with improved display quality is provided. The liquid crystal display device includes a signal line formed on a first substrate to extend generally in a first direction, a color filter at least partially overlapping the signal line, a black matrix pattern separated from the color filters by a separation region, and a column spacer pattern formed on the separation region.
Abstract:
A display substrate includes a signal line, a thin-film transistor (“TFT”), a key pattern, a light-blocking pattern, a color filter, a pixel electrode and an alignment key. The signal line and the key pattern are formed on a substrate. The TFT is electrically connected to the signal line. The light-blocking pattern is formed on the substrate and covers the signal line, the TFT and the key pattern. The color filter is formed in a unit pixel area of the substrate. The pixel electrode is formed on the color filter and is electrically connected to the TFT. The alignment key is formed on the light-blocking pattern, and a position of the alignment key on the substrate corresponds to a position of the key pattern on the substrate.
Abstract:
Systems and methods for generating microwave plasma are disclosed. The present invention provides a microwave plasma nozzle (26) that includes a gas flow tube (40), and a rod-shaped conductor (34) that is disposed in the gas flow tube (40) and has a tip (33) near the outlet of the gas flow tube (40). A portion (35) of the rod-shaped conductor (34) extends into a microwave cavity (24) to receive microwaves passing in the cavity (24). These received microwaves are focused at the tip (33) to heat the gas into plasma. The microwave plasma nozzle (26) also includes a vortex guide (36) between the rod-shaped conductor (34) and the gas flow tube (40) imparting a helical shaped flow direction to the gas flowing through the tube (40). The microwave plasma nozzle (26) further includes a shielding mechanism (108) for reducing a microwave power loss through the gas flow tube (40).
Abstract:
A liquid crystal display includes a first substrate and a second substrate facing each other, a first spacer and a second spacer on the first substrate and have different heights, and a liquid crystal layer between the first substrate and the second substrate and including a plurality of a liquid crystal molecule. The first spacer and the second spacer include a photosensitive material defining a maximum height of a spacer with respect to a predetermined a cross-section width dimension of the spacer, and heights less than the maximum height with respect to cross-section width dimensions larger than the predetermined cross-section width dimension. The first spacer and the second spacer can include a black pigment.
Abstract:
Disclosed is a method for portably measuring calories, the method including determining if an electric field is formed through an Inter-Digital Capacitor (IDC) sensor in contact with skin; extracting an amount of sweat generated from the skin using the formed electric field; and measuring the calories using the extracted resultant value.
Abstract:
A method of producing a liquid crystal display includes forming a plurality of black matrices on an insulating substrate to define first, second and third pixel regions, forming a color filter layer on the black matrices and on an exposed portion of the insulating substrate on which the black matrices are not formed, forming an organic layer for forming an upper spacer on the color filter layer, and forming a first color filter pattern on a first pixel region, lower spacers on the black matrices, and upper spacers on the lower spacers by at least substantially simultaneously patterning the color filter layer and the organic layer for forming an upper spacer.
Abstract:
The present invention provides a plasma generating system that includes: a microwave generator for generating microwave energy; a power supply connected to the microwave generator for providing power thereto; a microwave cavity; a waveguide operatively connected to the microwave cavity for transmitting microwave energy thereto; an isolator for dissipating microwave energy reflected from the microwave cavity; and at least one nozzle coupled to the microwave cavity. The nozzle includes: a housing having a generally cylindrical space formed therein, the space forming a gas flow passageway; a rod-shaped conductor disposed in the space and operative to transmit microwave energy along a surface thereof so that the microwave energy excites gas flowing through the space; and an impedance controlling structure which adjusts the impedance of the nozzle.