Abstract:
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
Abstract:
A display may be provided with integral touch functionality. The display may include a common electrode layer having row electrodes arranged in rows and column electrodes interposed between the row electrodes of each row. The row electrodes may be electrically coupled by conductive paths. The row and column electrodes may be coupled to touch sensor circuitry that uses the row and column electrodes to detect touch events. Each electrode of the common electrode layer may cover a respective portion of an array of pixels. Each pixel of the display may have a respective aperture. The conductive paths that electrically couple row electrodes of the common electrode layer may cover or otherwise block some light from passing through pixels, resulting in reduced apertures. Dummy structures may be provided for other pixels that modify the apertures of the other pixels to match the reduced apertures associated with the conductive paths.
Abstract:
An electronic device display may have an array of display pixels that are controlled using a grid of data lines and gate lines. The display may include compact gate driver circuits that perform gate driver operations to drive corresponding gate lines. Each compact gate driver circuit may include a first driver stage and a second driver stage. The first driver stage may receive a start pulse signal and produce a control signal. The control signal may be stored by a capacitor to identify a control state of the gate driver circuit. The second driver stage may receive the control signal, a clock signal, and a corresponding inverted clock signal and drive the corresponding gate line based on the received signals. The second driver stage may include pass transistor circuitry that passes the clock signal to the corresponding gate line and may include short circuit protection circuitry.
Abstract:
A method is provided for fabricating thin-film transistors (TFTs) for an LCD having an array of pixels. The method includes depositing a first photoresist layer over a portion of a TFT stack. The TFT stack includes a conductive gate layer, and a semiconductor layer. The method also includes doping the exposed semiconductor layer with a first doping dose. The method further includes etching a portion of the conductive gate layer to expose a portion of the semiconductor layer, and doping the exposed portion of the semiconductor layer with a second doping dose. The method also includes removing the first photoresist layer, and depositing a second photoresist layer over a first portion of the doped semiconductor layer in an active area of the pixels to expose a second portion of the doped semiconductor layer in an area surrounding the active area. The method further includes doping the second portion of the doped semiconductor layer with a third doping dose, the first dose being higher than the second dose and the third dose.
Abstract:
A transistor that may be used in electronic displays to selectively activate one or more pixels. The transistor includes a metal layer, a silicon layer deposited on at least a portion of the metal layer, the silicon layer includes an extension portion that extends a distance past the metal layer, and at least three lightly doped regions positioned in the silicon layer. The at least three lightly doped regions have a lower concentration of doping atoms than other portions of the silicon layer forming the transistor.
Abstract:
A display may include an active area with a first region and a second region. The first region may overlap an input-output component such as a camera and may have a higher transparency than the second region. The first region may have a lower pixel density than the second region. Signal lines that pass through the first region may have transparent portions that overlap the first region and opaque portions that overlap the second region. To mitigate artifacts caused by high resistance of the transparent portions of the signal lines, the signal lines may include supplemental opaque portions that are electrically connected in parallel to the transparent portions and that are routed through the second region around the first region.
Abstract:
A light emitter that operates through a display may cause display artifacts, even when the light emitter operates using non-visible wavelengths. To mitigate artifacts caused by a light emitter operating through a display, the display may have a higher density of thin-film transistor sub-pixels than emissive sub-pixels. This allows for a region in the display to include emissive sub-pixels but be free of thin-film transistor sub-pixels. The light emitter may operate through this region in the display. Additionally, to reduce the amount of space occupied in the inactive area of a display by gate driver circuitry, at least a portion of the gate driver circuitry may be positioned in the active area of the display. To accommodate the gate driver circuitry, emissive sub-pixels may be laterally shifted relative to corresponding thin-film transistor sub-pixels.
Abstract:
A light emitter that operates through a display may cause display artifacts, even when the light emitter operates using non-visible wavelengths. To mitigate artifacts caused by a light emitter operating through a display, the display may have a higher density of thin-film transistor sub-pixels than emissive sub-pixels. This allows for a region in the display to include emissive sub-pixels but be free of thin-film transistor sub-pixels. The light emitter may operate through this region in the display. Additionally, to reduce the amount of space occupied in the inactive area of a display by gate driver circuitry, at least a portion of the gate driver circuitry may be positioned in the active area of the display. To accommodate the gate driver circuitry, emissive sub-pixels may be laterally shifted relative to corresponding thin-film transistor sub-pixels.
Abstract:
A display may have an array of pixels. Display driver circuitry may supply data and control signals to the pixels. Each pixel may have seven transistors, a capacitor, and a light-emitting diode such as an organic light-emitting diode. The seven transistors may receive control signals using horizontal control lines. Each pixel may have first and second emission enable transistors that are coupled in series with a drive transistor and the light-emitting diode of that pixel. The first and second emission enable transistors may be coupled to a common control line or may be separately controlled so that on-bias stress can be effectively applied to the drive transistor. The display driver circuitry may have gate driver circuits that provide different gate line signals to different rows of pixels within the display. Different rows may also have different gate driver strengths and different supplemental gate line loading structures.
Abstract:
An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. The display and substrate may have rounded corners. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer may cover the array of pixels. A ground power supply path may be used to distribute a ground voltage to the cathode layer. The ground power supply path may be formed from a metal layer that is shorted to the cathode layer using portions of a metal layer that forms anodes for the diodes, may be formed from a mesh shaped metal pattern, may have L-shaped path segments, may include laser-deposited metal on the cathode layer, and may have other structures that facilitate distribution of the ground power supply.