Abstract:
The present disclosure provides a method of dual damascene processing. The method includes providing a substrate having vias formed therein; forming an under-layer in the vias and on the substrate; applying a solvent washing process to the under-layer; forming a silicon contained layer on the under-layer; patterning the silicon contained layer (SCL) to form SCL openings exposing the under-layer within the SCL openings; and etching the substrate and the under-layer within the SCL openings to form trenches.
Abstract:
Immersion lithography system and method using a sealed wafer bottom are described. One embodiment is an immersion lithography apparatus comprising a lens assembly comprising an imaging lens and a wafer stage for retaining a wafer beneath the lens assembly, the wafer stage comprising a seal ring disposed on a seal ring frame along a top edge of the wafer retained on the wafer stage, the seal ring for sealing a gap between an edge of the wafer and the wafer stage. The embodiment further includes a fluid tank for retaining immersion fluid, the fluid tank situated with respect to the wafer stage for enabling full immersion of the wafer retained on the wafer stage in the immersion fluid and a cover disposed over at least a portion of the fluid tank for providing a temperature-controlled, fluid-rich environment within the fluid tank; and
Abstract:
A method of lithography patterning includes forming a first material layer on a substrate; forming a first patterned resist layer including at least one opening therein on the first material layer; forming a second material layer on the first patterned resist layer and the first material layer; forming a second patterned resist layer including at least one opening therein on the second material layer; and etching the first and second material layers uncovered by the first and second patterned resist layers.
Abstract:
A shallow trench isolation structure has a trench formed in a substrate, a silicon oxynitride layer conformally formed on the sidewalls and bottom of the trench, and a high density plasma (HDP) oxide layer substantially filling the trench.
Abstract:
An integrated circuit capable of operating despite a profile shift is disclosed. Overlay marks on the integrated circuit are surrounded by a trench that tends to relieve the effect of a profile shift caused by stress applied to the integrated circuit. The position of the overlay marks tends, therefore, not to be affected by the stress.
Abstract:
A photoresist material having a polymer that turns soluble to a base solution in response to reaction with acid. The material includes a photo-acid generator (PAG) that decomposes to form acid in response to radiation energy and a quencher capable of neutralizing acid and having a reduced mobility. The photoresist material can thereby prevent water mark defects from immersion lithography.
Abstract:
An integrated circuit capable of operating despite a profile shift is disclosed. Overlay marks on the integrated circuit are surrounded by a trench that tends to relieve the effect of a profile shift caused by stress applied to the integrated circuit. The position of the overlay marks tends, therefore, not to be affected by the stress.
Abstract:
A method for forming an etch-resistant photoresist pattern on a semiconductor substrate is provided. In one embodiment, a photoresist layer is formed on the substrate. The photoresist layer is exposed and developed to form a photoresist pattern. A polymer-containing layer is formed over the photoresist pattern. The photoresist pattern and the polymer-containing layer are thermally treated so that polymer is substantially diffused into the photoresist pattern thereby enhancing the etch resistance of the photoresist pattern. The polymer-containing layer is thereafter removed.
Abstract:
A method of forming an overlay mark is provided. A first material layer is formed on a substrate, and then a first trench serving as a trench type outer mark is formed in the first material layer. The first trench is partially filled with the first deposition layer. A second material is formed over the first trench and the first deposition layer. A second trench is formed exposing the first deposition layer within the first trench. The second trench is partially filled with a second deposition layer forming a third trench. A third material layer is formed on the substrate to cover the second deposition layer and the second material layer. A step height is formed on the third deposition layer between the edge of the first trench and the center of the first trench. A raised feature serving as an inner mark is formed on the third deposition layer.