Abstract:
Embodiments of semiconductor assemblies, and related integrated circuit devices and techniques, are disclosed herein. In some embodiments, a semiconductor assembly may include a flexible substrate, a polycrystalline semiconductor material, and a polycrystalline dielectric disposed between and adjacent to the flexible substrate and the polycrystalline semiconductor material. The polycrystalline semiconductor material. The polycrystalline semiconductor material may include a polycrystalline III-V material, a polycrystalline II-VI material or polycrystalline germanium. Other embodiments may be disclosed and/or claimed.
Abstract:
An apparatus including a heterostructure disposed on a substrate and defining a channel region, the heterostructure including a first material having a first band gap less than a band gap of a material of the substrate and a second material having a second band gap that is greater than the first band gap; and a gate stack on the channel region, wherein the second material is disposed between the first material and the gate stack. A method including forming a first material having a first band gap on a substrate; forming a second material having a second band gap greater than the first band gap on the first material; and forming a gate stack on the second material.
Abstract:
An apparatus including a heterostructure disposed on a substrate and defining a channel region, the heterostructure including a first material having a first band gap less than a band gap of a material of the substrate and a second material having a second band gap that is greater than the first band gap; and a gate stack on the channel region, wherein the second material is disposed between the first material and the gate stack. A method including forming a first material having a first band gap on a substrate; forming a second material having a second band gap greater than the first band gap on the first material; and forming a gate stack on the second material.
Abstract:
A III-N semiconductor channel is formed on a III-N transition layer formed on a (111) or (110) surface of a silicon template structure, such as a fin sidewall. In embodiments, the silicon fin has a width comparable to the III-N epitaxial film thicknesses for a more compliant seeding layer, permitting lower defect density and/or reduced epitaxial film thickness. In embodiments, a transition layer is GaN and the semiconductor channel comprises Indium (In) to increase a conduction band offset from the silicon fin. In other embodiments, the fin is sacrificial and either removed or oxidized, or otherwise converted into a dielectric structure during transistor fabrication. In certain embodiments employing a sacrificial fin, the III-N transition layer and semiconductor channel is substantially pure GaN, permitting a breakdown voltage higher than would be sustainable in the presence of the silicon fin.