Abstract:
A method and apparatus for transmitting a signal from a base station to a first user equipment (UE) in a multiple-input multiple-output (MIMO) wireless communication system. Information on a movement speed of a second UE is acquired from the second UE. Channel information is determined based on the information on the movement speed. The channel information is previously measured by the first UE. A transmission and reception scheme is determined based on the determined channel information. At least one of the determined channel information or the determined transmission and reception scheme is transmitted to the second UE.
Abstract:
A method of determining a weight for a beamforming by a base station in a wireless communication system according to one embodiment of the present invention may include determining an angle of an analog beamforming in a hybrid beamforming in which the analog beamforming and a digital beamforming are coupled, obtaining a pre-compensation component with respect to the analog beamforming to be applied to the digital beamforming based on the angle of the analog beamforming, and determining the weight of the digital beamforming using the obtained pre-compensation component with respect to the analog beamforming and an angle determination component of the digital beamforming.
Abstract:
The present specification relates to a method by which a terminal transmits channel information to a base station in an inter-vehicle communication system. The method for transmitting channel information can comprise the steps of: measuring channel information and feeding the same back to the base station; and receiving data on the basis of the channel information. The terminal comprises a plurality of distributed antenna units (DU), and when it is possible to select whether to activate each of the plurality of DUs, a plurality of channel information sets are measured according to the number and the location of activated DUs, and the channel information to be fed back can include the plurality of channel information sets.
Abstract:
Disclosed is a method for receiving a synchronization signal, comprising: respectively receiving, from a plurality of base stations, a plurality of synchronization signals generated by using a phase pattern vector set, which is nested orthogonal and hierarchically configured; measuring a sequence index and an index of a phase pattern vector for the plurality of synchronization signals; selecting, among the plurality of base stations, a base station having the highest correlation value calculated as a measurement result; and establishing a connection with the selected base station, wherein the phase pattern vector set has different phase pattern vectors for changing a phase of a synchronization signal sequence up to a predetermined repetition number.
Abstract:
A method and an apparatus for forming a beam in an antenna array are disclosed. The method for forming a beam in an antenna array comprises the steps of: forming a first beam pattern in a first band on the basis of a single-band antenna aggregation and a multi-band antenna aggregation; and forming other beam patterns in bands other than the first band on the basis of the multi-band antenna aggregation, wherein the single-band antenna aggregation includes a plurality of single-band antennas which operate only in the first band, the multi-band antenna aggregation includes multi-band antennas which operate in a plurality of bands including the first band, and the antenna array may be arranged in a two-dimensional plane such that distances between the plurality of single-band antennas and the plurality of multi-band antennas are constant.
Abstract:
A method of processing a reception signal and a MIMO receiver are disclosed. The method includes the steps of selecting a reference RE from an RE group including a plurality of REs, generating a preprocessing filter to be shared by the plurality of the REs belonging to the RE group based on channel information of the reference RE and generating detection signals for the plurality of the REs in a manner of compensating reception signals for each of the plurality of the REs using the preprocessing filter and channel information of each of the plurality of the REs.
Abstract:
In this disclosure, methods for antenna combining to meet the pilot requirement of the massive MIMO system, and apparatuses for the same are provided. In a user equipment (UE) perspective of view, the UE transmits first pilot signals via each of multiple antennas of the UE, and receives antenna combining information from a base station. Here, the antenna combining information combines the multiple antennas into one or more antenna groups based on the first pilot signals, and each of orthogonal sequences is allocated to each of the antenna groups. The UE transmits second pilot signals using the allocated orthogonal sequences for each of the antenna groups. The second pilot signals can be used for estimating downlink channel from the base station to the UE.
Abstract:
A method by which a base station transmits a reference signal to a terminal in a wireless communication system is disclosed. Particularly, the method comprises the steps of determining a reference signal resource interval expressed as a unit of one or more resource blocks (RBs), setting reference signal resources for a downlink bandwidth defined by a plurality of RBs, according to the reference signal resource interval, and transmitting the reference signal to the terminal by using the set reference signal resources, wherein the reference signal resource interval is determined on the basis of the number of reference signal antenna ports for which quasi co-location (QCL) can be assumed.
Abstract:
The present invention relates to a wireless communication system and, more specifically, to a method and an apparatus for reporting channel state information (CSI). Particularly, the method comprises the steps of: receiving a reference signal (RS) from a base station; and reporting, to the base station, the CSI generated by using the RS, wherein the CSI is measured on the basis of a specific CSI-RS set among a plurality of CSI-RS sets, beamforming weight vectors in a vertical domain which are set differently for each of horizontal domain antenna ports to which the same beamforming weight vectors in a vertical domain is applied.
Abstract:
A method and apparatus for transmitting an uplink signal in a wireless communication system are disclosed. A transmission apparatus for receiving an uplink (UL) signal from a user equipment (UE) and transmitting the received UL signal to a base station (BS) in a wireless communication system includes: a plurality of reception antennas configured to receive UL signals from the UE; a radio frequency (RF) repeater configured to amplify and map the received UL signals to at least one transmission antenna; and a plurality of transmission antennas configured to transmit the amplified UL signals to the BS, wherein the RF repeater is configured to select M received UL signals from among a plurality of received UL signals which are received in the plurality of reception antennas, and map the M received UL signals to N transmission antennas from among the plurality of transmission antennas, and the number of the reception antennas (Nrx,REP) is higher than the number of the transmission antennas (Ntx,REP), and N is the number of the transmission antennas which is used to transmit the M received UL signals.